Linear Inequations

 (In one variable)
4.1 Introduction :

If x and y are two quantities; then both of these quantities will satisfy any one of the following four conditions (relations) :
i.e. either (i) $x>y$ (ii) $x \geq y$ (iii) $x<y$ or (iv) $x \leq y$

Each of the four conditions, given above, is an inequation.
In the same way, each of the following also represents an inequation :
$x<8, x \geq 5,-x+4 \leq 3, x+8>4$, etc.

4.2 Linear Inequations In One Variable :

If a, b and c are real numbers, then each of the following is called a linear inequation in one variable :
(i) $a x+b>c$. Read as: $a x+b$ is greater than c.
(ii) $a x+b<c$. Read as: $a x+b$ is less than c.
(iii) $a x+b \geq c$. Read as : $a x+b$ is greater than or equal to c.
(iv) $a x+b \leq c$. Read as : $a x+b$ is less than or equal to c.

In an inequation, the signs ' $>$ ', ' $<$ ', ' \geq ' and ' \leq ' are called signs of inequality.

4.3 Solving a Linear Inequation Algebrically :

To solve a given linear inequation means to find the value or values of the variable used in it.

Thus; (i) to solve the inequation $3 x+5>8$ means to find the variable x.
(ii) to solve the inequation $8-5 y \leq 3$ means to find the variable y and so on The following working rules must be adopted for solving a given linear inequation :

Rule 1: On transferring a positive term from one side of an inequation to its other side, the sign of the term becomes negative.

$$
\begin{array}{lll}
\text { e.g. } \quad 2 x+3>7 & \Rightarrow 2 x>7-3, & 5 x+4 \leq 15 \Rightarrow 5 x \leq 15-4, \\
& 23 \geq 4 x+15 & \Rightarrow 23-15 \geq 4 x
\end{array} \text { and so on. }
$$

Rule 2: On transferring a negative term from one side of an inequation to its other side, the sign of the term becomes positive.

$$
\begin{array}{llll}
\text { e.g. } & 2 x-3>7 & \Rightarrow 2 x>7+3, & 5 x-4 \leq 15 \Rightarrow 5 x \leq 15+4, \\
& 23 \geq 4 x-15 & \Rightarrow 23+15 \geq 4 x & \text { and so on. }
\end{array}
$$

Rule 3 : If each term of an inequation be multiplied or divided by the same positive number, the sign of inequality remains the same.

That is, if \boldsymbol{p} is positive

(i) $x<y \Rightarrow p x<p y$ and $\left(\frac{x}{p}\right)<\left(\frac{y}{p}\right)$,
(ii) $\quad x>y \Rightarrow p x>p y \quad$ and $\left(\frac{x}{p}\right)>\left(\frac{y}{p}\right)$,

$$
\begin{equation*}
x \leq y \Rightarrow p x \leq p y \quad \text { and } \quad\left(\frac{x}{p}\right) \leq\left(\frac{y}{p}\right) \tag{iii}
\end{equation*}
$$

and, (iv) $x \geq y \Rightarrow p x \geq p y \quad$ and $\quad\left(\frac{x}{p}\right) \geq\left(\frac{y}{p}\right)$.
Thus, $\quad x \leq 6 \Rightarrow 4 x \leq 4 \times 6$,
$x \geq 5 \Rightarrow 3 x \geq 3 \times 5$,
$x \leq 2 \Rightarrow \frac{x}{10} \leq \frac{2}{10}$ and so on.
Rule 4 : If each term of an inequation be multiplied or divided by the same negative number, the sign of inequality reverses.

That is, if \boldsymbol{p} is negative
(i) $x<y \Rightarrow p x>p y$ and $\left(\frac{x}{p}\right)>\left(\frac{y}{p}\right)$
(ii) $x \geq y \Rightarrow p x \leq p y$ and $\left(\frac{x}{p}\right) \leq\left(\frac{y}{p}\right)$

Thus, $x \leq 6 \Rightarrow-4 x \geq-4 \times 6$,

$$
x>5 \Rightarrow-3 x<-3 \times 5
$$

$x \geq y \Rightarrow \frac{x}{-2} \leq \frac{y}{-2} \quad$ and so on.
Rule 5: If sign of each term on both the sides of an inequation is changed, the sign of inequality gets reversed.
i.e. (i) $-x>5 \Leftrightarrow x<-5$
(ii) $3 y \leq 15 \Leftrightarrow-3 y \geq-15$
(iii) $-2 y<-7 \Leftrightarrow 2 y>7$ and so on.

Rule 6 : If both the sides of an inequation are positive or both are negative, then on taking their reciprocals, the sign of inequality reverses.
i.e. if x and y both are either positive or both are negative, then
(i) $x>y \Leftrightarrow \frac{1}{x}<\frac{1}{y}$
(ii) $x \leq y \Leftrightarrow \frac{1}{x} \geq \frac{1}{y}$
(iii) $x \geq y \Leftrightarrow \frac{1}{x} \leq \frac{1}{y} \quad$ and so on.
4.4 Replacement Set and Solution Set:

The set, from which the value of the variable x is to be chosen, is called replacement set and its subset, whose elements satisfy the given inequation, is called solution set.
e.g. Let the given inequation be $x<3$, if :
(i) the replacement set $=\mathrm{N}$, the set of natural numbers;
the solution set $=\{1,2\}$
(ii)
(iii)
the replacement set $=\mathrm{W}$, the set of whole numbers;
the solution set $=\{0,1,2\}$
the replacement set $=\mathrm{Z}$ or I , the set of integers;
the solution set $=\{\ldots,-2,-1,0,1,2\}$
But, if the replacement set is the set of real numbers, the solution set can only be described in set-builder form, i.e. $\{x: x \in \mathrm{R}$ and $x<3\}$.

1 If the replacement set is the set of natural numbers (N), find the solution set of : (i) $3 x+4<16$ (ii) $8-x \leq 4 x-2$.

Solution :

(i) $3 x+4<16 \quad \Rightarrow \quad 3 x<16-4$
[Using rule 1]
$\Rightarrow \quad 3 x<12$
$\Rightarrow \quad \frac{3 x}{3}<\frac{12}{3}$
[Using rule 3]
i.e. $\quad x<4$

Since, the replacement set $=\mathrm{N}$ (set of natural numbers)
\therefore Solution set $=\{1,2,3\}$
Ans.
(ii) $8-x \leq 4 x-2 \Rightarrow-x-4 x \leq-2-8$
[Using rule 1]

$$
\begin{aligned}
& \Rightarrow \quad-5 x \leq-10 \\
& \Rightarrow \quad \frac{-5 x}{-5} \geq \frac{-10}{-5}
\end{aligned}
$$

[Using rule 4]
i.e. $\quad x \geq 2$

Since, the replacement set $=\mathrm{N}$
\therefore Solution set $=\{2,3,4,5,6, \ldots \ldots$.

Alternative method :

$$
\begin{aligned}
8-x \leq 4 x-2 & \Rightarrow & 4 x-2 & \geq 8-x \quad[x \leq y \text { and } y \geq x \text { mean the same] } \\
& \Rightarrow & 4 x+x & \geq 8+2 \\
& \Rightarrow & 5 x & \geq 10 \\
& \Rightarrow & x & \geq 2 \text { and } x \in \mathrm{~N}
\end{aligned}
$$

\therefore Solution set $=\{2,3,4,5,6$,

2 If the replacement set is the set of whole numbers (W), find the solution set of : (i) $5 x+4 \leq 24$ (ii) $4 x-2<2 x+10$.

Solution :

(i) $5 x+4 \leq 24 \quad \Rightarrow \quad 5 x \leq 24-4$

$$
\Rightarrow \quad 5 x \leq 20 \text { and } x \leq \frac{20}{5} \text { i.e. } x \leq 4
$$

Since, the replacement set is the set of whole numbers
\therefore Solution set $=\{0,1,2,3,4\}$
Ans.
(ii) $4 x-2<2 x+10 \quad \Rightarrow \quad 4 x-2 x<10+2$

$$
\Rightarrow \quad 2 x<12 \text { and } x<6
$$

Since, the replacement set $=W$ (whole numbers)
\therefore Solution set $=\{0,1,2,3,4,5\}$
Ans.

3 If the replacement set is the set of integers, (I or Z), between -6 and 8 , find the solution set of : (i) $6 x-1 \geq 9+x$ (ii) $15-3 x>x-3$.

Solution :

(i) $6 x-1 \geq 9+x \quad \Rightarrow \quad 6 x-x \geq 9+1$

$$
\Rightarrow \quad 5 x \geq 10 \text { and } x \geq 2
$$

Since, the replacement set is the set of integers between -6 and 8 .
\therefore Solution set $=\{2,3,4,5,6,7\}$
Ans.
(ii) $15-3 x>x-3 \quad \Rightarrow \quad-3 x-x>-3-15$
$\Rightarrow \quad-4 x>-18$
$\Rightarrow \quad \frac{-4 x}{-4}<\frac{-18}{-4} \quad$ [Using rule 4]
$\Rightarrow \quad x<4.5$
Since, the replacement set is the set of integers between -6 and 8
\therefore Solution set $=\{-5,-4,-3,-2,-1,0,1,2,3,4\}$
Ans.
Alternative method :

$$
\begin{array}{rlr}
15-3 x>x-3 & \Rightarrow & x-3<15-3 x \\
& \Rightarrow & x+3 x<15+3 \\
& \Rightarrow & 4 x<18 \text { and } x<4.5
\end{array}
$$

\therefore Solution set $=\{-5,-4,-3,-2,-1,0,1,2,3,4\}$
Ans.

4 If the replacement set is the set of real numbers (R), find the solution set of : (i) $5-3 x<11$ (ii) $8+3 x \geq 28-2 x$.

Solution:

(i) $5-3 x<11$

$$
\Rightarrow \quad-3 x<11-5
$$

$$
\begin{array}{rlrl}
\Rightarrow & ' & -3 x & <6 \\
\Rightarrow & \frac{-3 x}{-3} & >\frac{6}{-3} \\
\Rightarrow & x & >-2
\end{array}
$$

[Using rule 4]

Since, the replacement set is the set of real numbers (R)
\therefore Solution set $=\{\boldsymbol{x}: \boldsymbol{x}>-2$ and $\boldsymbol{x} \in \mathbf{R}\}$
Ans.
(ii) $8+3 x \geq 28-2 x \quad \Rightarrow \quad 3 x+2 x \geq 28-8$

$$
\Rightarrow \quad 5 x \geq 20 \text { and } x \geq 4
$$

Since, the replacement set is the set of real numbers
\therefore Solution set $=\{x: x \geq 4$ and $x \in R\}$
Ans.
(5) Solve : $\frac{x}{2}-5 \leq \frac{x}{3}-4$, where x is a positive odd integer.

Solution :

$$
\begin{aligned}
\frac{x}{2}-5 \leq \frac{x}{3}-4 \quad & \Rightarrow \quad \frac{x}{2}-\frac{x}{3} \leq-4+5 \\
& \Rightarrow \quad \frac{3 x-2 x}{6} \leq 1 \Rightarrow x \leq 6
\end{aligned}
$$

Since, x is a positive odd integer
\therefore Solution set $=\{\mathbf{1}, \mathbf{3}, \mathbf{5}\}$
Ans.
6 Solve the following inequation: $2 y-3<y+1 \leq 4 y+7$; if:
(i) $y \in$ \{Integers $\}$
(ii) $y \in R$ (real numbers)

Solution :

$$
\begin{aligned}
2 y-3<y+1 \leq 4 y+7 & \Rightarrow & 2 y-3 & <y+1 & \text { and } & y+1 \leq 4 y+7 \\
& \Rightarrow & y & <4 & \text { and } & -6 \leq 3 y \\
& \Rightarrow & y & <4 & & \text { and }
\end{aligned}
$$

(i) When $\boldsymbol{y} \in\{$ Integers $\}$
\therefore Solution set $=\{\mathbf{- 2 , - 1 , 0 , 1 , 2 , 3 \}}$
Ans.
(ii) When $y \in R$ (real numbers)
\therefore Solution set $=\{y:-2 \leq y<4$ and $y \in R\}$

1. State, true or false :
(i) $x<-y \Rightarrow-x>y$
(ii) $-5 x \geq 15 \Rightarrow x \geq-3$
(iii) $2 x \leq-7 \Rightarrow \frac{2 x}{-4} \geq \frac{-7}{-4}$
(iv) $7>5 \Rightarrow \frac{1}{7}<\frac{1}{5}$
2. State, whether the following statements are true or false.
(i) If $a<b$, then $a-c<b-c$
(ii) If $a>b$, then $a+c>b+c$
(iii) If $a<b$, then $a c>b c$
(iv) If $a>b$, then $\frac{a}{c}<\frac{b}{c}$
(v) If $a-c>b-d$; then $a+d>b+c$
(vi) If $a<b$, and $c>0$, then $a-c>b-c$
where a, b, c and d are real numbers and $c \neq 0$.
3. If $x \in \mathrm{~N}$, find the solution set of inequations.
(i) $5 x+3 \leq 2 x+18$
(ii) $3 x-2<19-4 x$
4. If the replacement set is the set of whole numbers, solve :
(i) $x+7 \leq 11$
(ii) $3 x-1>8$
(iii) $8-x>5$
(iv) $7-3 x \geq-\frac{1}{2}$
(v) $x-\frac{3}{2}<\frac{3}{2}-x$
(vi) $18 \leq 3 x-2$
5. Solve the inequation :
$3-2 x \geq x-12$ given that $x \in \mathrm{~N}$.
6. If $25-4 x \leq 16$, find :
(i) the smallest value of x, when x is a real number,
(ii) the smallest value of x, when x is an integer.
7. If the replacement set is the set of real numbers, solve :
(i) $-4 x \geq-16$
(ii) $8-3 x \leq 20$
(iii) $5+\frac{x}{4}>\frac{x}{5}+9$
(iv) $\frac{x+3}{8}<\frac{x-3}{5}$
8. Find the smallest value of x for which $5-2 x<5 \frac{1}{2}-\frac{5}{3} x$, where x is an integer.
9. Find the largest value of x for which $2(x-1) \leq 9-x$ and $x \in \mathrm{~W}$.
10. Solve the inequation :
$12+1 \frac{5}{6} x \leq 5+3 x$ and $x \in \mathrm{R}$.
11. Given $x \in\{$ integers \}, find the solution set of : $-5 \leq 2 x-3<x+2$.
12. Given $\mathrm{x} \in$ \{whole numbers \}, find the solution set of : $-1 \leq 3+4 x<23$.

4.5 Representation of the solution on the number line :

A real number line can be used to represent the solution set of an inequation.
The convention is that O (a hollow circle) marks the end of a range with a strict inequality (i.e. $<$ or $>$) and - (a darkened circle) marks the end of a range involving an equality as well (i.e. \leq or \geq).

For Example :

The adjacent figure shows

$x<2$ and $x \in \mathrm{R}$.
The number 2 is encircled and the circle is not darkened to show that 2 is not included in the graph.

If 2 is also included i.e. $x \leq 2$, then the circle will be darkened and the graph will be as
 shown alongside:

Similarly, study each of the rollowing careruily :
(i)

$$
\{x: x \geq 4 \text { and } x \in \mathrm{R}\}
$$

(iii)

(ii)

$$
\{x: x<-3 \text { and } x \in \mathrm{R}\}
$$

(iv)

(v)

(vi)

$\{x:-3 \leq x<3$ and $x \in \mathrm{R}\}$
(vii)

$\{x:-1 \leq x \leq 4 \Lambda x \in \mathrm{~N}\}$
(viii)

$\{x:-1 \leq x \leq 4 \Lambda x \in \mathrm{R}\}$
[Note: The symbol ' Λ ' stands for 'and'].
7 Given that $x \in R$, solve the following inequality and graph the solution on the number line : $-1 \leq 3+4 x<23$
[2006]

Solution :

Given : $-1 \leq 3+4 x<23 ; x \in \mathrm{R}$

$$
\begin{array}{lccr}
\Rightarrow & -1 \leq 3+4 x & \text { and } & 3+4 x<23 \\
\Rightarrow & -4 \leq 4 x & \text { and } & 4 x<20 \\
\Rightarrow & -1 \leq x & \text { and } & x<5 \\
\Rightarrow & -1 \leq x<5 ; x \in \mathbf{R} & \\
\therefore & \text { Solution }=\{-1 \leq \boldsymbol{x}<\mathbf{5}: \boldsymbol{x} \in \mathbf{R}\}
\end{array}
$$

Ans.
Solution on the number line is :

$$
\left.=\begin{array}{llllllllllllll}
4-2
\end{array}\right)
$$

Ans.

8 Simplify: $-\frac{1}{3} \leq \frac{x}{2}-1 \frac{1}{3}<\frac{1}{6}: x \in \mathrm{R}$.
Graph the values of x on the real number line.

Solution :

The given inequation has two parts :

$$
\begin{array}{cclll}
& -\frac{1}{3} \leq \frac{x}{2}-1 \frac{1}{3} & \text { and } & & \frac{x}{2}-1 \frac{1}{3}<\frac{1}{6} \\
\Rightarrow & -\frac{1}{3}+1 \frac{1}{3} \leq \frac{x}{2} & \Rightarrow & \frac{x}{2}<\frac{1}{6}+\frac{4}{3} \\
\Rightarrow & 1 \leq \frac{x}{2} & & \Rightarrow & \frac{x}{2}<\frac{9}{6} \\
\Rightarrow & 2 \leq x & & \Rightarrow & x<\frac{9}{6} \times 2 \\
& & & \Rightarrow & x<3
\end{array}
$$

\therefore On simplifying, the given inequation reduces to $2 \leq x<3$ and the required graph on number line is :

Ans.

9 List the solution set of $50-3(2 x-5)<25$, given that $x \in W$.
Also, represent the solution set obtained on a number line.

Solution :

$$
\begin{aligned}
50-3(2 x-5)<25 & \Rightarrow 50-6 x+15<25 \\
& \Rightarrow-6 x<25-65 \\
& \Rightarrow-6 x<-40 \\
& \Rightarrow \frac{-6 x}{-6}>\frac{-40}{-6} \\
& \Rightarrow x>6 \frac{2}{3}
\end{aligned}
$$

$$
\Rightarrow \frac{-6 x}{-6}>\frac{-40}{-6} \quad \begin{aligned}
& \text { Division by a negative number } \\
& \text { reverses the sign of ineauality. }
\end{aligned}
$$

reverses the sign of inequality.

Required solution set $=\{7,8,9, \ldots \ldots \ldots . . .$. \}
Ans.

4.6 Combining Inequations:

10. Solve and graph the solution set of $3 x+6 \geq 9$ and $-5 x>-15$; where $x \in R$.

Solution :

$$
\begin{aligned}
3 x+6 \geq 9 & \Rightarrow 3 x \geq 9-6 \\
& \Rightarrow 3 x \geq 3 \quad \Rightarrow x \geq 1
\end{aligned}
$$

$$
\text { And, }-5 x>-15 \Rightarrow \frac{-5 x}{-5}<\frac{-15}{-5} \Rightarrow x<3
$$

Graph for $x \geq 1$:

Graph for $x<3$:

\therefore Graph of solution set of $x \geq 1$ and $x<3$
$=$ Graph of points common to both $x \geq 1$ and $x<3$

Ans.
11. Solve and graph the solution set of $-2<2 x-6$ or $-2 x+5 \geq 13$; where $x \in R$.

Solution :

$$
\begin{aligned}
-2<2 x-6 & \Rightarrow 2 x-6>-2 \\
& \Rightarrow 2 x>4 \quad \Rightarrow x>2 \\
-2 x+5 \geq 13 & \Rightarrow-2 x \geq 8 \\
& \Rightarrow x \leq-4
\end{aligned}
$$

Graph for $x>2$:

\therefore Graph of solution set of $x>2$ or $x \leq-4$
$=$ Graph of points which belong to $x>2$ or $x \leq-4$ or both

$=$| $\longrightarrow-5$ | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Ans.
12

$$
\begin{aligned}
& \text { Given : } P=\{x: 5<2 x-1 \leq 11, x \in R\} \\
& Q=\{x:-1 \leq 3+4 x<23, x \in I\} \\
& \text { where } \mathrm{R}=\text { \{real numbers }\} \text { and } \mathrm{I}=\text { \{integers }\} \text {. } \\
& \text { Represent } P \text { and } Q \text { on two different number lines. Write down the elements of } P \cap Q \text {. }
\end{aligned}
$$

Solution :

For P :

$$
\begin{aligned}
& 5<2 x-1 \leq 11 \text {, where } x \in \mathrm{R} \\
& \Rightarrow \quad 5<2 x-1 \quad \text { and } \quad 2 x-1 \leq 11 \\
& \Rightarrow \quad 3<x \quad \text { and } \quad x \leq 6 \\
& \text { i.e. } 3<x \leq 6 ; x \in R
\end{aligned}
$$

For Q: $\quad-1 \leq 3+4 x<23, x \in \mathrm{I}$

$$
\begin{aligned}
& \Rightarrow \quad-1 \leq 3+4 x \quad \text { and } \quad 3+4 x<23 \\
& \Rightarrow \quad-1 \leq x \quad \text { and } \quad x<5 \\
& \text { i.e. }-1 \leq x<5 \text {; where } x \in \mathrm{I}
\end{aligned}
$$

Hence, $P \cap Q=\{$ elements common to both P and $Q\}=\{4\}$.
Ans.
13. Write down the range of values of $x(x \in \mathrm{R})$ for which both the inequations $x>2$ and $-1 \leq x \leq 4$ are true.

Solution :

Both the given inequations are true in the range; where their graphs on the real number lines overlap.

The graphs for the given inequalities are drawn alongside :

It is clear from both the graphs that their common range is $2<x \leq 4$.

\therefore Required range is $2<x \leq 4$
Ans.
For any two solution sets A and B :
(i) A and B = Intersection of sets A and B
$=$ Set of elements common to set A and to set B
$=A \cap B$
(ii)

A or $\mathrm{B}=$ Union of sets A and B
$=$ Set of elements which belong either set A and to set B $=A \cup B$
14. The diagram, given below, represents two inequations P and Q on real number lines:

(i) Write down P and Q in set builder notation.
(ii) Represent each of the following sets on different number lines:
(a) $P \cup Q$
(b) $P \cap Q$
(c) $P-Q$
(d) $Q-P$
(e) $P \cap Q^{\prime}$
(f) $P^{\prime} \cap Q$

Solution :

(i) $\mathrm{P}=\{x:-2<x \leq 6$ and $x \in R\}$ and,
$\mathrm{Q}=\{x: 2 \leq x<8$ and $x \in \mathrm{R}\}$
Ans.
(ii) (a) $\mathbf{P} \cup \mathbf{Q}=$ Numbers which belong to P or to Q or to both

Ans.
(b) $\mathbf{P} \cap \mathbf{Q}=$ Numbers common to both P and Q

Ans.
(c) $\mathbf{P}-\mathbf{Q}=$ Numbers which belong to \mathbf{P} but do not belong to Q

Ans.
(d) $\mathbf{Q}-\mathbf{P}=$ Numbers which belong to Q but do not belong to \mathbf{P}

Ans.
(e) $\mathbf{P} \cap \mathbf{Q}^{\prime}=$ Numbers which belong to P but do not belong to $Q=P-Q$

Ans.
(f) $\mathbf{P}^{\prime} \cap \mathbf{Q}=$ Numbers which do not belong to P but belong to $\mathrm{Q}=\mathrm{Q}-\mathrm{P}$

Ans.

15
Find three smallest consecutive whole numbers such that the difference between one-fourth of the largest and one-fifth of the smallest is at least 3.

Solution :

Let the required whole numbers be $x, x+1$ and $x+2$.
According to the given statement :

$$
\begin{aligned}
\frac{x+2}{4}-\frac{x}{5} \geq 3 & \Rightarrow \frac{5 x+10-4 x}{20} \geq 3 \\
& \Rightarrow x+10 \geq 60 \text { i.e., } x \geq 50
\end{aligned}
$$

Since, the smallest value of $x=50$ that satisfies the inequation $x \geq 50$.
\therefore Required smallest consecutive whole numbers are :

$$
\begin{aligned}
& =x, x+1 \text { and } x+2 \\
& =50,50+1 \text { and } 50+2 \\
& =50,51 \text { and } 52
\end{aligned}
$$

Ans.

EXERCISE 4(B)

1. Represent the following inequalities on real number lines :
(i) $2 x-1<5$
(ii) $3 x+1 \geq-5$
(iii) $2(2 x-3) \leq 6$
(iv) $-4<x<4$
(v) $-2 \leq x<5$
(vi) $8 \geq x>-3$
(vii) $-5<x \leq-1$
2. For each graph given alongside, write an inequation taking x as the variable :
(i)

(ii)

(iii)

(iv)

3. For the following inequations, graph the solution set on the real number line :
(i) $-4 \leq 3 x-1<8$
(ii) $x-1<3-x \leq 5$
4. Represent the solution of each of the following inequalities on the real number line:
(i) $4 x-1>x+11$
(ii) $7-x \leq 2-6 x$
(iii) $x+3 \leq 2 x+9$
(iv) $2-3 x>7-5 x$
(v) $1+x \geq 5 x-11$
(vi) $\frac{2 x+5}{3}>3 x-3$
5. $x \in\{$ real numbers \} and $-1<3-2 x \leq 7$, evaluate x and represent it on a number line.
6. List the elements of the solution set of the inequation $-3<x-2 \leq 9-2 x ; x \in \mathrm{~N}$.
7. Find the range of values of x which satisfies

$$
-2 \frac{2}{3} \leq x+\frac{1}{3}<3 \frac{1}{3}, x \in \mathrm{R} .
$$

Graph these values of x on the number line.
[2007]
8. Find the values of x, which satisfy the inequation:

$$
-2 \leq \frac{1}{2}-\frac{2 x}{3} \leq 1 \frac{5}{6}, x \in \mathrm{~N} .
$$

Graph the solution on the number line.
9. Given $x \in$ \{real numbers \}, find the range of values of x for which $-5 \leq 2 x-3<x+2$ and represent it on a real number line.
10. If $5 x-3 \leq 5+3 x \leq 4 x+2$, express it as $a \leq x \leq b$ and then state the values of a and b.
11. Solve the following inequation and graph the solution set on the number line :

$$
2 x-3<x+2 \leq 3 x+5 ; x \in \mathrm{R}
$$

12. Solve and graph the solution set of :
(i) $2 x-9<7$ and $3 x+9 \leq 25 ; x \in \mathrm{R}$.
(ii) $2 x-9 \leq 7$ and $3 x+9>25 ; x \in \mathrm{I}$.
(iii) $x+5 \geq 4(x-1)$ and $3-2 x<-7 ; x \in \mathrm{R}$.
13. Solve and graph the solution set of :
(i) $3 x-2>19$ or $3-2 x \geq-7 ; x \in \mathrm{R}$.
(ii) $5>p-1>2$ or $7 \leq 2 p-1 \leq 17 ; p \in \mathrm{R}$.
14. The diagram represents two inequations A and B on real number lines :

(i) Write down A and B in set builder notation.
(ii) Represent $\mathrm{A} \cap \mathrm{B}$ and $\mathrm{A} \cap \mathrm{B}^{\prime}$ on two different number lines.
15. Use real number line to find the range of values of x for which :
(i) $x>3$ and $0<x<6$.
(ii) $x<0$ and $-3 \leq x<1$.
(iii) $-1<x \leq 6$ and $-2 \leq x \leq 3$
16. Illustrate the set $\{x:-3 \leq x<0$ or $x>2$; $x \in \mathrm{R}\}$ on a real number line.
17. Given $\mathrm{A}=\{x:-1<x \leq 5, x \in \mathrm{R}\}$ and $\mathrm{B}=\{x:-4 \leq x<3, x \in \mathrm{R}\}$
Represent on different number lines :
(i) $\mathrm{A} \cap \mathrm{B}$
(ii) $\mathrm{A}^{\prime} \cap \mathrm{B}$
(iii) $\mathrm{A}-\mathrm{B}$
18. P is the solution set of $7 x-2>4 x+1$ and Q is the solution set of $9 x-45 \geq 5(x-5)$; where $x \in R$. Represent :
(i) $\mathrm{P} \cap \mathrm{Q}$
(ii) $P-Q$
(iii) $\mathrm{P} \cap \mathrm{Q}^{\prime}$ on different number lines.
19. If $\mathrm{P}=\{x: 7 x-4>5 x+2, x \in \mathrm{R}\}$ and $\mathrm{Q}=\{x: x-19 \geq 1-3 x, x \in \mathrm{R}\}$; find the range of set $\mathrm{P} \cap \mathrm{Q}$ and represent it on a number line.
20. Find the range of values of x, which satisfy:
$-\frac{1}{3} \leq \frac{x}{2}+1 \frac{2}{3}<5 \frac{1}{6}$
Graph, in each of the following cases, the values of x on the different real number lines:
(i) $x \in \mathrm{~W}$
(ii) $x \in Z$
(iii) $x \in \mathrm{R}$.
21. Given : $\mathrm{A}=\{x:-8<5 x+2 \leq 17, x \in \mathrm{I}\}$

$$
\mathrm{B}=\{x:-2 \leq 7+3 x<17, x \in \mathrm{R}\}
$$

Where $\mathrm{R}=$ \{real numbers $\}$ and $\mathrm{I}=\{$ integers $\}$.
Represent A and B on two different number lines. Write down the elements of $\mathrm{A} \cap \mathrm{B}$.
22. Solve the following inequation and represent the solution set on the number line $2 x-5 \leq 5 x+4<11$, where $x \in$ I. [2011]
23. Given that $x \in \mathrm{I}$, solve the inequation and graph the solution on the number line :
$3 \geq \frac{x-4}{2}+\frac{x}{3} \geq 2$.
[2004]
24. Given :
$\mathrm{A}=\{x: 11 x-5>7 x+3, x \in \mathrm{R}\}$ and
$\mathrm{B}=\{x: 18 x-9 \geq 15+12 x, x \in \mathrm{R}\}$.
Find the range of set $\mathrm{A} \cap \mathrm{B}$ and represent it on a number line
[2005]
25. Find the set of values of x, satisfying :
$7 x+3 \geq 3 x-5$ and $\frac{x}{4}-5 \leq \frac{5}{4}-x$,
where $x \in \mathrm{~N}$.
26. Solve :
(i) $\frac{x}{2}+5 \leq \frac{x}{3}+6$, where x is a positive odd integer
(ii) $\frac{2 x+3}{3} \geq \frac{3 x-1}{4}$, where x is a positive even integer
27. Solve the inequation :
$-2 \frac{1}{2}+2 x \leq \frac{4 x}{5} \leq \frac{4}{3}+2 x, x \in \mathrm{~W}$.
Graph the solution set on the number line.
28. Find three consecutive largest positive integers such that the sum of one-third of first, one-fourth of second and one-fifth of third is at most 20 .
29. Solve the given inequation and graph the solution on the number line.
$2 y-3<y+1 \leq 4 y+7, y \in \mathbf{R}$
[2008]
30. Solve the inequation :
$3 z-5 \leq z+3<5 z-9 ; z \in \mathrm{R}$.
Graph the solution set on the number line.
31. Solve the following inequation and represent the solution set on the number line.
$-3<-\frac{1}{2}-\frac{2 x}{3} \leq \frac{5}{6}, x \in R$.
[2010]
32. Solve the following inequation and represent the solution set on the number line :
$4 x-19<\frac{3 x}{5}-2 \leq \frac{-2}{5}+x, x \in \mathrm{R}$
[2012]
33. Solve the following inequation, write the solution set and represent it on the number line:
$-\frac{x}{3} \leq \frac{x}{2}-1 \frac{1}{3}<\frac{1}{6}, x \in \mathrm{R}$
[2013]
34. Find the values of x, which satisfy the inequation $-2 \frac{5}{6}<\frac{1}{2}-\frac{2 x}{3} \leq 2, x \in W$. Graph the solution set on the number line.
[2014]
35. Solve the following inequation and write the solution set :
$13 x-5<15 x+4<7 x+12, x \in \mathrm{R}$
Represent the solution on a real number line.
[2015]

4.7 Important :

1. If the product of two numbers is less than 0 (zero) i.e. product is negative; one of the two numbers is positive and the other is negative.
2. If the product of two numbers is greater than 0 (zero) i.e. positive; both the numbers are positive or both are negative.
3. For $(x-3)(x+5)<0$

If $(x-3)$ is positive, then $x+5$ is negative
and if $x-3$ is negative, then $x+5$ is positive
Case 1: When $(x-3)$ is positive and $(x+5)$ is negative
i.e. $\quad x-3>0$ and $x+5<0$
$\Rightarrow \quad x>3$ and $x<-5$
It is not possible, as number greater than 3 cannot be smaller than -5 .
Case 2: When $(x-3)$ is negative and $(x+5)$ is positive
i.e. $\quad x-3<0$ and $x+5>0$
$\Rightarrow \quad x<3$ and $x>-5$
$\Rightarrow \quad-5<x<3$, which is possible.
If $x \in \mathrm{~N}$, then : $-5<x<3$ on the number line is:

If $x \in \mathrm{Z}$, then : $-5<x<3$ on the number line is :

If $x \in \mathrm{R}$, then : $-5<x<3$ on the number line is :

2. For $(x-3)(x+5)>0$

If $(x-3)$ is negative, then $(x+5)$ is also negative
and, if $(x-3)$ is positive, then $(x+5)$ is also positive
Case 1:x-3 is negative and $x+5$ is negative
i.e. $\quad x-3<0$ and $x+5<0$
$\Rightarrow \quad x<3$ and $x<-5$
$\Rightarrow \quad x<-5$ as the number smaller than -5 is less than 3 also.
Case 2: $x-3$ is positive and $x+5$ is positive
i.e. $\quad x-3>0$ and $x+5>0$
$\Rightarrow \quad x>3$ and $x>-5$
$\Rightarrow \quad x>3$ as the number greater than 3 is also greater than -5.
If $x \in \mathrm{R}$, then for $(x-3)(x+5)>0$ the number line is :

