Linear Inequations

(In one variable)

4.1 Introduction :

If x and y are two quantities; then both of these quantities will satisfy any one of the following four conditions (relations):

i.e. either (i)
$$x > y$$
 (ii) $x \ge y$ (iii) $x < y$ or (iv) $x \le y$

Each of the four conditions, given above, is an inequation.

In the same way, each of the following also represents an inequation:

$$x < 8$$
, $x \ge 5$, $-x + 4 \le 3$, $x + 8 > 4$, etc.

4.2 Linear Inequations In One Variable :

If a, b and c are real numbers, then each of the following is called a linear inequation in one variable:

- (i) ax + b > c. Read as : ax + b is greater than c.
- (ii) ax + b < c. Read as : ax + b is less than c.
- (iii) $ax + b \ge c$. Read as: ax + b is greater than or equal to c.
- (iv) $ax + b \le c$. Read as : ax + b is less than or equal to c.

In an inequation, the signs '>', '<', '≥' and '≤' are called signs of inequality.

4.3 Solving a Linear Inequation Algebrically :

To solve a given linear inequation means to find the value or values of the variable used in it.

- Thus; (i) to solve the inequation 3x + 5 > 8 means to find the variable x.
 - (ii) to solve the inequation $8 5y \le 3$ means to find the variable y and so on

The following working rules must be adopted for solving a given linear inequation:

Rule 1: On transferring a positive term from one side of an inequation to its other side, the sign of the term becomes negative.

e.g.
$$2x + 3 > 7$$
 $\Rightarrow 2x > 7 - 3$, $5x + 4 \le 15 \Rightarrow 5x \le 15 - 4$, $23 \ge 4x + 15 \Rightarrow 23 - 15 \ge 4x$ and so on.

Rule 2: On transferring a negative term from one side of an inequation to its other side, the sign of the term becomes positive.

e.g.
$$2x - 3 > 7$$
 $\Rightarrow 2x > 7 + 3$, $5x - 4 \le 15 \Rightarrow 5x \le 15 + 4$, $23 \ge 4x - 15 \Rightarrow 23 + 15 \ge 4x$ and so on.

Rule 3: If each term of an inequation be multiplied or divided by the same positive number, the sign of inequality remains the same.

That is, if p is positive

(i)
$$x < y \implies px < py$$
 and $\left(\frac{x}{p}\right) < \left(\frac{y}{p}\right)$,

(ii)
$$x > y \implies px > py$$
 and $\left(\frac{x}{p}\right) > \left(\frac{y}{p}\right)$,

(iii)
$$x \le y \implies px \le py \quad \text{and} \quad \left(\frac{x}{p}\right) \le \left(\frac{y}{p}\right)$$

and, (iv)
$$x \ge y \implies px \ge py$$
 and $\left(\frac{x}{p}\right) \ge \left(\frac{y}{p}\right)$.

Thus, $x \le 6 \implies 4x \le 4 \times 6$,

$$x \ge 5 \implies 3x \ge 3 \times 5$$
,

$$x \le 2 \implies \frac{x}{10} \le \frac{2}{10}$$
 and so on.

Rule 4: If each term of an inequation be multiplied or divided by the same negative number, the sign of inequality reverses.

That is, if p is negative

(i)
$$x < y \implies px > py$$
 and $\left(\frac{x}{p}\right) > \left(\frac{y}{p}\right)$

(ii)
$$x \ge y \implies px \le py$$
 and $\left(\frac{x}{p}\right) \le \left(\frac{y}{p}\right)$

Thus, $x \le 6 \implies -4x \ge -4 \times 6$,

$$x > 5 \implies -3x < -3 \times 5$$

$$x \ge y \implies \frac{x}{-2} \le \frac{y}{-2}$$
 and so on.

Rule 5: If sign of each term on both the sides of an inequation is changed, the sign of inequality gets reversed.

i.e. (i)
$$-x > 5 \Leftrightarrow x < -5$$
 (ii) $3y \le 15 \Leftrightarrow -3y \ge -15$

(iii) $-2y < -7 \Leftrightarrow 2y > 7$ and so on.

Rule 6: If both the sides of an inequation are positive or both are negative, then on taking their reciprocals, the sign of inequality reverses.

i.e. if x and y both are either positive or both are negative, then

(i)
$$x > y \Leftrightarrow \frac{1}{x} < \frac{1}{y}$$
 (ii) $x \le y \Leftrightarrow \frac{1}{x} \ge \frac{1}{y}$

(iii)
$$x \ge y \Leftrightarrow \frac{1}{x} \le \frac{1}{y}$$
 and so on.

4.4 Replacement Set and Solution Set:

The set, from which the value of the variable x is to be chosen, is called **replacement set** and its subset, whose elements satisfy the given inequation, is called **solution set**.

e.g. Let the given inequation be x < 3, if :

- (i) the replacement set = N, the set of natural numbers; the solution set = $\{1, 2\}$
- (ii) the replacement set = W, the set of whole numbers; the solution set = $\{0, 1, 2\}$
- (iii) the replacement set = Z or I, the set of integers; the solution set = {......, -2, -1, 0, 1, 2}

But, if the replacement set is the set of real numbers, the solution set can only be described in set-builder form, i.e. $\{x : x \in \mathbb{R} \text{ and } x < 3\}$.

If the replacement set is the set of natural numbers (N), find the solution set of: (i) 3x + 4 < 16 (ii) $8 - x \le 4x - 2$.

Solution:

(i)
$$3x + 4 < 16$$
 \Rightarrow $3x < 16 - 4$ [Using rule 1]
 \Rightarrow $3x < 12$
 \Rightarrow $\frac{3x}{3} < \frac{12}{3}$ [Using rule 3]
i.e. $x < 4$

Since, the replacement set = N (set of natural numbers)

$$\therefore Solution set = \{1, 2, 3\}$$

Ans.

(ii)
$$8 - x \le 4x - 2 \implies -x - 4x \le -2 - 8$$
 [Using rule 1]

$$\Rightarrow -5x \le -10$$

$$\Rightarrow \frac{-5x}{-5} \ge \frac{-10}{-5}$$
 [Using rule 4]
i.e. $x \ge 2$

Since, the replacement set = N

$$\therefore$$
 Solution set = {2, 3, 4, 5, 6,}

Alternative method:

$$8-x \le 4x-2 \implies 4x-2 \ge 8-x$$
 [$x \le y$ and $y \ge x$ mean the same]
 $\Rightarrow 4x+x \ge 8+2$ [Using rule 2]
 $\Rightarrow 5x \ge 10$
 $\Rightarrow x \ge 2$ and $x \in \mathbb{N}$

$$\therefore$$
 Solution set = {2, 3, 4, 5, 6,}

Ans.

If the replacement set is the set of whole numbers (W), find the solution set of: (i) $5x + 4 \le 24$ (ii) 4x - 2 < 2x + 10.

Solution:

(i)
$$5x + 4 \le 24$$
 \Rightarrow $5x \le 24 - 4$ \Rightarrow $5x \le 20$ and $x \le \frac{20}{5}$ i.e. $x \le 4$

Since, the replacement set is the set of whole numbers

$$\therefore$$
 Solution set = $\{0, 1, 2, 3, 4\}$

Ans.

(ii)
$$4x - 2 < 2x + 10$$
 \Rightarrow $4x - 2x < 10 + 2$ \Rightarrow $2x < 12 \text{ and } x < 6$

Since, the replacement set = W(whole numbers)

$$\therefore$$
 Solution set = {0, 1, 2, 3, 4, 5}

Ans.

If the replacement set is the set of integers, (I or Z), between -6 and 8, find the solution set of: (i) $6x - 1 \ge 9 + x$ (ii) 15 - 3x > x - 3.

Solution:

(i)
$$6x - 1 \ge 9 + x$$
 \Rightarrow $6x - x \ge 9 + 1$
 \Rightarrow $5x \ge 10$ and $x \ge 2$

Since, the replacement set is the set of integers between -6 and 8.

$$\therefore$$
 Solution set = {2, 3, 4, 5, 6, 7}

Ans.

(ii)
$$15 - 3x > x - 3$$
 $\Rightarrow -3x - x > -3 - 15$
 $\Rightarrow -4x > -18$
 $\Rightarrow \frac{-4x}{-4} < \frac{-18}{-4}$ [Using rule 4]
 $\Rightarrow x < 4.5$

Since, the replacement set is the set of integers between -6 and 8

$$\therefore$$
 Solution set = {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4}

Alternative method:

$$15 - 3x > x - 3 \qquad \Rightarrow \qquad x - 3 < 15 - 3x$$

$$\Rightarrow \qquad x + 3x < 15 + 3$$

$$\Rightarrow \qquad 4x < 18 \text{ and } x < 4.5$$

$$\therefore$$
 Solution set = {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4}

Ans.

Ans.

4 If the replacement set is the set of real numbers (R), find the solution set of : (i) 5 - 3x < 11 (ii) $8 + 3x \ge 28 - 2x$.

Solution:

(i)
$$5 - 3x < 11$$
 \Rightarrow $-3x < 11 - 5$

$$\Rightarrow \qquad -3x < 6$$

$$\Rightarrow \qquad \frac{-3x}{-3} > \frac{6}{-3}$$

$$\Rightarrow \qquad x > -2$$
[Using rule 4]

Since, the replacement set is the set of real numbers (R)

$$\therefore$$
 Solution set = $\{x : x > -2 \text{ and } x \in \mathbb{R}\}$

Ans.

(ii)
$$8 + 3x \ge 28 - 2x$$
 \Rightarrow $3x + 2x \ge 28 - 8$ \Rightarrow $5x \ge 20$ and $x \ge 4$

Since, the replacement set is the set of real numbers

$$\therefore$$
 Solution set = $\{x : x \ge 4 \text{ and } x \in \mathbb{R}\}$

Ans.

5 Solve:
$$\frac{x}{2} - 5 \le \frac{x}{3} - 4$$
, where x is a positive odd integer.

Solution:

$$\frac{x}{2} - 5 \le \frac{x}{3} - 4 \qquad \Rightarrow \qquad \frac{x}{2} - \frac{x}{3} \le -4 + 5$$

$$\Rightarrow \qquad \frac{3x - 2x}{6} \le 1 \quad \Rightarrow \quad x \le 6$$

Since, x is a positive odd integer

$$\therefore Solution set = \{1, 3, 5\}$$

Ans.

Solve the following inequation :
$$2y - 3 < y + 1 \le 4y + 7$$
; if : (i) $y \in \{\text{Integers}\}\$ (ii) $y \in R$ (real numbers)

Solution:

$$2y - 3 < y + 1 \le 4y + 7 \Rightarrow 2y - 3 < y + 1 \quad \text{and} \quad y + 1 \le 4y + 7$$

$$\Rightarrow \quad y < 4 \quad \text{and} \quad -6 \le 3y$$

$$\Rightarrow \quad y < 4 \quad \text{and} \quad y \ge -2$$

$$\Rightarrow \quad -2 \le y < 4$$

(i) When $y \in \{Integers\}$

$$\therefore$$
 Solution set = {-2, -1, 0, 1, 2, 3}

Ans.

(ii) When $y \in \mathbb{R}$ (real numbers)

$$\therefore \text{ Solution set} = \{y : -2 \le y < 4 \text{ and } y \in \mathbb{R}\}\$$

Ans.

- 1. State, true or false:

 - (i) $x < -y \Rightarrow -x > y$ (ii) $-5x \ge 15 \Rightarrow x \ge -3$
 - (iii) $2x \le -7 \Rightarrow \frac{2x}{4} \ge \frac{-7}{4}$
 - (iv) $7 > 5 \implies \frac{1}{7} < \frac{1}{5}$
- 2. State, whether the following statements are true or false.
 - (i) If a < b, then a c < b c
 - (ii) If a > b, then a + c > b + c
 - (iii) If a < b, then ac > bc
 - (iv) If a > b, then $\frac{a}{c} < \frac{b}{a}$
 - (v) If a c > b d; then a + d > b + c
 - (vi) If a < b, and c > 0, then a c > b cwhere a, b, c and d are real numbers and $c \neq 0$.
- 3. If $x \in \mathbb{N}$, find the solution set of inequations.
 - (i) $5x + 3 \le 2x + 18$
 - (ii) 3x 2 < 19 4x
- 4. If the replacement set is the set of whole numbers, solve:
 - (i) $x + 7 \le 11$
- (ii) 3x 1 > 8
- (iii) 8 x > 5
- (iv) $7 3x \ge -\frac{1}{2}$

- (v) $x \frac{3}{2} < \frac{3}{2} x$ (vi) $18 \le 3x 2$
- 5. Solve the inequation:

 $3-2x \ge x-12$ given that $x \in \mathbb{N}$.

- 6. If $25 4x \le 16$, find :
 - (i) the smallest value of x, when x is a real number.
 - (ii) the smallest value of x, when x is an
- 7. If the replacement set is the set of real numbers, solve:
 - (i) $-4x \ge -16$
- (ii) $8 3x \le 20$
- (iii) $5 + \frac{x}{4} > \frac{x}{5} + 9$ (iv) $\frac{x+3}{8} < \frac{x-3}{5}$
- 8. Find the smallest value of x for which $5-2x < 5\frac{1}{2} - \frac{5}{3}x$, where x is an integer.
- 9. Find the largest value of x for which $2(x-1) \le 9-x$ and $x \in W$.
- 10. Solve the inequation:

 $12 + 1\frac{5}{6}x \le 5 + 3x$ and $x \in \mathbb{R}$.

- 11. Given $x \in \{\text{integers}\}\$, find the solution set of: $-5 \le 2x - 3 < x + 2$.
- 12. Given $x \in \{\text{whole numbers}\}\$, find the solution set of : $-1 \le 3 + 4x < 23$.

4.5 Representation of the solution on the number line:

A real number line can be used to represent the solution set of an inequation.

The convention is that O (a hollow circle) marks the end of a range with a strict inequality (i.e. < or >) and • (a darkened circle) marks the end of a range involving an equality as well (i.e. \leq or \geq).

For Example:

The adjacent figure shows

x < 2 and $x \in \mathbb{R}$.

The number 2 is encircled and the circle is not darkened to show that 2 is not included in the graph.

If 2 is also included i.e. $x \le 2$, then the circle will be darkened and the graph will be as shown alongside:

Similarly, study each of the following carefully:

(i)
$$\underbrace{-5 - 4 - 3 - 2 - 1}_{-5 - 4 - 3 - 2 - 1} \underbrace{0 \ 1 \ 2 \ 3 \ 4 \ 5}_{\{x : x \ge 4 \text{ and } x \in R\}}$$

(ii)
$$-5 -4 -3 -2 -1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5$$

 $\{x : x < -3 \text{ and } x \in R\}$

(v)
$$\frac{1}{-5} - 4 - 3 - 2 - 1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$$
 $\{x : -3 \le x < 3 \quad \Lambda \quad x \in W\}$

(vi)
$$\begin{cases} -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 \end{cases}$$
 $\{x : -3 \le x < 3 \text{ and } x \in R\}$

(vii)
$$\underbrace{-5 - 4 - 3 - 2 - 1}_{-5 - 4 - 3 - 2 - 1} \underbrace{0 \ 1 \ 2 \ 3 \ 4 \ 5}_{1 \ 2 \ 3 \ 4 \ 5}$$

(viii)
$$\underbrace{-5 - 4 - 3 - 2 - 1}_{-5 - 4 - 3 - 2 - 1} \underbrace{0 \ 1 \ 2 \ 3 \ 4 \ 5}_{\{x : -1 \le x \le 4 \ \Lambda \ x \in R\}}$$

[Note: The symbol 'A' stands for 'and'].

Given that $x \in \mathbb{R}$, solve the following inequality and graph the solution on the number line: $-1 \le 3 + 4x < 23$ [2006]

Solution:

Given: $-1 \le 3 + 4x < 23$; $x \in \mathbb{R}$

$$\Rightarrow \qquad -1 \le 3 + 4x \quad \text{and} \quad 3 + 4x < 23$$

$$\Rightarrow$$
 $-4 \le 4x$ and $4x < 20$

$$\Rightarrow$$
 $-1 \le x$ and $x < 5$

$$\Rightarrow$$
 $-1 \le x < 5; x \in \mathbb{R}$

$$\therefore \quad \text{Solution} = \{-1 \le x < 5 : x \in \mathbb{R}\}$$

Ans.

Solution on the number line is:

Ans.

8 Simplify: $-\frac{1}{3} \le \frac{x}{2} - 1\frac{1}{3} < \frac{1}{6} : x \in \mathbb{R}$.

Graph the values of x on the real number line.

Solution:

The given inequation has two parts:

$$-\frac{1}{3} \le \frac{x}{2} - 1\frac{1}{3} \quad \text{and} \quad \frac{x}{2} - 1\frac{1}{3} < \frac{1}{6}$$

$$\Rightarrow \quad -\frac{1}{3} + 1\frac{1}{3} \le \frac{x}{2} \qquad \qquad \Rightarrow \qquad \frac{x}{2} < \frac{1}{6} + \frac{4}{3}$$

$$\Rightarrow \quad 1 \le \frac{x}{2} \qquad \qquad \Rightarrow \qquad \frac{x}{2} < \frac{9}{6}$$

$$\Rightarrow \quad 2 \le x \qquad \qquad \Rightarrow \qquad x < \frac{9}{6} \times 2$$

$$\Rightarrow \quad x < 3$$

 \therefore On simplifying, the given inequation reduces to $2 \le x < 3$ and the required graph on number line is:

List the solution set of 50 - 3(2x - 5) < 25, given that $x \in W$.

Also, represent the solution set obtained on a number line.

Solution:

$$50 - 3 (2x - 5) < 25 \Rightarrow 50 - 6x + 15 < 25$$

$$\Rightarrow -6x < 25 - 65$$

$$\Rightarrow -6x < -40$$

$$\Rightarrow \frac{-6x}{-6} > \frac{-40}{-6}$$

$$\Rightarrow x > 6\frac{2}{3}$$

Division by a negative number reverses the sign of inequality.

Required solution set = $\{7, 8, 9, \dots \}$

Ans.

4.6 Combining Inequations :

W s

Solve and graph the solution set of $3x + 6 \ge 9$ and -5x > -15; where $x \in \mathbb{R}$.

Solution:

$$3x + 6 \ge 9 \Rightarrow 3x \ge 9 - 6$$
$$\Rightarrow 3x \ge 3 \qquad \Rightarrow x \ge 1$$

And,
$$-5x > -15 \Rightarrow \frac{-5x}{-5} < \frac{-15}{-5} \Rightarrow x < 3$$

Graph for x < 3:

-5 -4 -3 -2 -1 0 1 2 3 4 5

 \therefore Graph of solution set of $x \ge 1$ and x < 3

= Graph of points common to both $x \ge 1$ and x < 3

Ans.

y "

Solve and graph the solution set of -2 < 2x - 6 or $-2x + 5 \ge 13$; where $x \in \mathbb{R}$.

Solution:

$$-2 < 2x - 6 \Rightarrow 2x - 6 > -2$$

$$\Rightarrow 2x > 4 \Rightarrow x > 2$$

$$-2x + 5 \ge 13 \Rightarrow -2x \ge 8$$

$$\Rightarrow x \le -4$$

Graph for
$$x > 2$$
:

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Graph for $x \le -4$:

$$\therefore$$
 Graph of solution set of $x > 2$ or $x \le -4$

= Graph of points which belong to
$$x > 2$$
 or $x \le -4$ or both

Ans.

Given:
$$P = \{x : 5 < 2x - 1 \le 11, x \in R\}$$

$$Q = \{x : -1 \le 3 + 4x < 23, x \in I\}$$

where $R = \{\text{real numbers}\}\$ and $I = \{\text{integers}\}\$. Represent P and Q on two different number lines. Write down the elements of P \cap Q.

Solution:

For P:
$$5 < 2x - 1 \le 11$$
, where $x \in \mathbb{R}$

$$\Rightarrow$$
 5 < 2x - 1 and 2x - 1 \le 11

$$\Rightarrow$$
 3 < x and $x \le 6$

i.e.
$$3 < x \le 6$$
; $x \in \mathbb{R}$

$$P = \frac{1}{-4 - 3 - 2 - 1} \cdot 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8$$

For Q:
$$-1 \le 3 + 4x < 23, x \in I$$

$$\Rightarrow$$
 $-1 \le 3 + 4x$ and $3 + 4x < 23$

$$\Rightarrow -1 \le x \qquad \text{and} \qquad x < 5$$

i.e.
$$-1 \le x < 5$$
; where $x \in I$

Hence, $P \cap Q = \{\text{elements common to both P and } Q\} = \{4\}.$

Ans.

Write down the range of values of x ($x \in R$) for which both the inequations x > 2 and $-1 \le x \le 4$ are true.

Solution:

Both the given inequations are true in the range; where their graphs on the real number lines overlap.

The graphs for the given inequalities are drawn alongside:

It is clear from both the graphs that their common range is $2 < x \le 4$.

\therefore Required range is $2 < x \le 4$

Ans.

For any two solution sets A and B:

= Set of elements common to set A and to set B

$$= A \cap B$$

= Set of elements which belong either set A and to set B

$$= A \cup B$$

The diagram, given below, represents two inequations P and Q on real number lines:

$$Q = \frac{1}{-3} - 2 - 10 + 12 + 34 + 56 + 78 + 9$$

- (i) Write down P and Q in set builder notation.
- (ii) Represent each of the following sets on different number lines:
 - (a) P ∪ Q
 - (b) P ∩ Q
- (c) P Q

- (d) Q P
- (e) P ∩ Q'
- (f) P'∩Q

Solution:

(i) $P = \{x : -2 < x \le 6 \text{ and } x \in R\}$ and, $Q = \{x : 2 \le x < 8 \text{ and } x \in R\}$

Ans.

(ii) (a) $P \cup Q$ = Numbers which belong to P or to Q or to both

Ans.

(b) $P \cap Q$ = Numbers common to both P and Q

Ans.

(c) P - Q = Numbers which belong to P but do not belong to Q

Ans.

(d) Q - P = Numbers which belong to Q but do not belong to P

Ans.

(e) $P \cap Q' =$ Numbers which belong to P but do not belong to Q = P - Q

Ans.

(f) $P' \cap Q =$ Numbers which do not belong to P but belong to Q = Q - P

Ans.

Find three smallest consecutive whole numbers such that the difference between one-fourth of the largest and one-fifth of the smallest is at least 3.

Solution:

Let the required whole numbers be x, x + 1 and x + 2.

According to the given statement:

$$\frac{x+2}{4} - \frac{x}{5} \ge 3 \implies \frac{5x+10-4x}{20} \ge 3$$
$$\implies x+10 \ge 60 \text{ i.e., } x \ge 50$$

Since, the smallest value of x = 50 that satisfies the inequation $x \ge 50$.

:. Required smallest consecutive whole numbers are :

$$= x, x + 1 \text{ and } x + 2$$

$$=$$
 50, 50 + 1 and 50 + 2

$$=$$
 50, 51 and 52

Ans.

EXERCISE 4(B)

- Represent the following inequalities on real number lines :
 - (i) 2x 1 < 5
- (ii) $3x + 1 \ge -5$
- (iii) $2(2x-3) \le 6$
- (iv) -4 < x < 4
- (v) $-2 \le x < 5$
- (vi) $8 \ge x > -3$
- (vii) $-5 < x \le -1$
- 2. For each graph given alongside, write an inequation taking x as the variable:

- 3. For the following inequations, graph the solution set on the real number line:
 - (i) $-4 \le 3x 1 < 8$
 - (ii) $x 1 < 3 x \le 5$
- 4. Represent the solution of each of the following inequalities on the real number line:
 - (i) 4x 1 > x + 11
 - (ii) $7 x \le 2 6x$
 - (iii) $x + 3 \le 2x + 9$
 - (iv) 2 3x > 7 5x
 - (v) $1 + x \ge 5x 11$
 - (vi) $\frac{2x+5}{3} > 3x 3$
- 5. $x \in \{\text{real numbers}\}\$ and $-1 < 3 2x \le 7$, evaluate x and represent it on a number line.
- 6. List the elements of the solution set of the inequation $-3 < x 2 \le 9 2x$; $x \in \mathbb{N}$.
- 7. Find the range of values of x which satisfies

$$-2\frac{2}{3} \le x + \frac{1}{3} < 3\frac{1}{3}, x \in \mathbb{R}.$$

Graph these values of x on the number line. [2007]

8. Find the values of x, which satisfy the inequation:

$$-2 \le \frac{1}{2} - \frac{2x}{3} \le 1\frac{5}{6}, x \in \mathbb{N}.$$

Graph the solution on the number line.

- 9. Given $x \in \{\text{real numbers}\}$, find the range of values of x for which $-5 \le 2x 3 < x + 2$ and represent it on a real number line.
- 10. If $5x 3 \le 5 + 3x \le 4x + 2$, express it as $a \le x \le b$ and then state the values of a and b.
- 11. Solve the following inequation and graph the solution set on the number line:

$$2x - 3 < x + 2 \le 3x + 5$$
; $x \in \mathbb{R}$.

- 12. Solve and graph the solution set of :
 - (i) 2x 9 < 7 and $3x + 9 \le 25$; $x \in \mathbb{R}$.
 - (ii) $2x 9 \le 7$ and 3x + 9 > 25; $x \in I$.
 - (iii) $x + 5 \ge 4 (x 1)$ and 3 2x < -7; $x \in \mathbb{R}$.
- 13. Solve and graph the solution set of :
 - (i) 3x 2 > 19 or $3 2x \ge -7$: $x \in \mathbb{R}$.
 - (ii) 5 > p 1 > 2 or $7 \le 2p 1 \le 17$; $p \in \mathbb{R}$.
- 14. The diagram represents two inequations A and B on real number lines:

- (i) Write down A and B in set builder notation.
- (ii) Represent $A \cap B$ and $A \cap B'$ on two different number lines.
- 15. Use real number line to find the range of values of x for which:
 - (i) x > 3 and 0 < x < 6.
 - (ii) x < 0 and $-3 \le x < 1$.
 - (iii) $-1 < x \le 6$ and $-2 \le x \le 3$

- 16. Illustrate the set $\{x: -3 \le x < 0 \text{ or } x > 2\}$ $x \in \mathbb{R}$ on a real number line.
- 17. Given $A = \{x : -1 < x \le 5, x \in R\}$ and $B = \{x : -4 \le x < 3, x \in R\}$

Represent on different number lines:

- (i) $A \cap B$
- (ii) $A' \cap B$
- (iii) A B
- 18. P is the solution set of 7x 2 > 4x + 1 and Q is the solution set of $9x - 45 \ge 5$ (x - 5); where $x \in R$. Represent:
 - (i) P ∩ O
 - (ii) P Q
 - (iii) P ∩ Q' on different number lines.
- 19. If $P = \{x : 7x 4 > 5x + 2, x \in R\}$ and $Q = \{x : x - 19 \ge 1 - 3x, x \in R\}$; find the range of set $P \cap O$ and represent it on a number line.
- 20. Find the range of values of x, which satisfy:

$$-\ \frac{1}{3} \le \frac{x}{2} + 1\frac{2}{3} < 5\frac{1}{6}$$

Graph, in each of the following cases, the values of x on the different real number lines:

- (ii) $x \in \mathbb{Z}$ (i) $x \in W$ (iii) $x \in \mathbb{R}$.
- 21. Given: $A = \{x : -8 < 5x + 2 \le 17, x \in I\}$ $B = \{x : -2 \le 7 + 3x < 17, x \in R\}$

Where $R = \{\text{real numbers}\}\$ and $I = \{\text{integers}\}\$. Represent A and B on two different number lines. Write down the elements of $A \cap B$.

- 22. Solve the following inequation represent the solution set on the number line $2x - 5 \le 5x + 4 < 11$, where $x \in I$.
- 23. Given that $x \in I$, solve the inequation and graph the solution on the number line:

$$3 \ge \frac{x-4}{2} + \frac{x}{3} \ge 2.$$
 [2004]

24. Given :

$$A = \{x : 11x - 5 > 7x + 3, x \in R\}$$
 and

$$B = \{x : 18x - 9 > 15 + 12x, x \in R\}.$$

Find the range of set $A \cap B$ and represent it on a number line [2005]

25. Find the set of values of x, satisfying:

$$7x + 3 \ge 3x - 5$$
 and $\frac{x}{4} - 5 \le \frac{5}{4} - x$, where $x \in \mathbb{N}$.

26. Solve :

- (i) $\frac{x}{2} + 5 \le \frac{x}{3} + 6$, where x is a positive
- (ii) $\frac{2x+3}{3} \ge \frac{3x-1}{4}$, where x is a positive
- 27. Solve the inequation:

$$-2\frac{1}{2} + 2x \le \frac{4x}{5} \le \frac{4}{3} + 2x, x \in W.$$

Graph the solution set on the number line.

- 28. Find three consecutive largest positive integers such that the sum of one-third of first, one-fourth of second and one-fifth of third is at most 20.
- 29. Solve the given inequation and graph the solution on the number line.

$$2y - 3 < y + 1 \le 4y + 7, y \in \mathbb{R}$$
 [2008]

30. Solve the inequation:

$$3z - 5 \le z + 3 < 5z - 9$$
; $z \in \mathbb{R}$.

Graph the solution set on the number line.

31. Solve the following inequation and represent the solution set on the number line.

$$-3 < -\frac{1}{2} - \frac{2x}{3} \le \frac{5}{6}, x \in R.$$
 [2010]

32. Solve the following inequation and represent the solution set on the number line :

$$4x - 19 < \frac{3x}{5} - 2 \le \frac{-2}{5} + x, x \in \mathbb{R}$$
 [2012]

33. Solve the following inequation, write the solution set and represent it on the number line:

$$-\frac{x}{3} \le \frac{x}{2} - 1\frac{1}{3} < \frac{1}{6}, x \in \mathbb{R}$$
 [2013]

34. Find the values of x, which satisfy the inequation

$$-2\frac{5}{6} < \frac{1}{2} - \frac{2x}{3} \le 2, x \in W$$
. Graph the solution set on the number line. [2014]

35. Solve the following inequation and write the solution set:

$$13x - 5 < 15x + 4 < 7x + 12, x \in \mathbb{R}$$

Represent the solution on a real number line.

[2015]

- 1. If the product of two numbers is less than 0 (zero) *i.e.* product is negative; one of the two numbers is positive and the other is negative.
- 2. If the product of two numbers is greater than 0 (zero) *i.e.* positive; both the numbers are positive or both are negative.

1. For
$$(x-3)(x+5) < 0$$

If (x - 3) is positive, then x + 5 is negative

and if x - 3 is negative, then x + 5 is positive

Case 1: When (x - 3) is positive and (x + 5) is negative

i.e. x-3>0 and x+5<0

 \Rightarrow x > 3 and x < -5

It is not possible, as number greater than 3 cannot be smaller than -5.

Case 2: When (x - 3) is negative and (x + 5) is positive

i.e. x-3 < 0 and x+5 > 0

 \Rightarrow x < 3 and x > -5

 \Rightarrow -5 < x < 3, which is possible.

If $x \in \mathbb{N}$, then : -5 < x < 3 on the number line is :

-6 -5 -4 -3 -2 -1 0 1 2 3 4

If $x \in \mathbb{Z}$, then : -5 < x < 3 on the number line is :

If $x \in \mathbb{R}$, then : -5 < x < 3 on the number line is :

2. For (x-3)(x+5) > 0

If (x-3) is negative, then (x+5) is also negative and, if (x-3) is positive, then (x+5) is also positive

Case 1: x - 3 is negative and x + 5 is negative

i.e. x-3 < 0 and x+5 < 0

 \Rightarrow x < 3 and x < -5

 \Rightarrow x < -5 as the number smaller than -5 is less than 3 also.

Case 2: x - 3 is positive and x + 5 is positive

i.e. x-3 > 0 and x+5 > 0

 \Rightarrow x > 3 and x > -5

 \Rightarrow x > 3 as the number greater than 3 is also greater than -5.

If $x \in \mathbb{R}$, then for (x - 3)(x + 5) > 0 the number line is:

