Quadratic Equations

5.1 Introduction:

An equation with one variable, in which the highest power of the variable is two, is known as quadratic equation.

For example :
(i) $3 x^{2}+4 x+7=0$
(iii) $2 x^{2}-50=0$
(ii) $4 x^{2}+5 x=0$
(iv) $x^{2}=4$, etc.

1. The standard form of a quadratic equation is $a x^{2}+b x+c=0$, where a, b and c are all real numbers and $a \neq 0$.
e.g. equation $4 x^{2}+5 x-6=0$ is a quadratic equation in standard form.
2. Every quadratic equation gives two values of the unknown variable used in it and these values are called roots of the equation.
3. Discriminant : For the quadratic equation $a x^{2}+b x+c=0, a \neq 0$; the expression $\boldsymbol{b}^{2}-4 \boldsymbol{a c}$ is called discriminant and is, in general, denoted by the letter ' \boldsymbol{D} '.
Thus, discriminant $D=\boldsymbol{b}^{2}-\mathbf{4 a c}$.
4. If a quadratic equation contains only two terms one square term and one first power term of the unknown, it is called adfected quadratic equation.
For example : (i) $4 x^{2}+5 x=0 \quad$ (ii) $7 x^{2}-3 x=0$, etc.
5. If the quadratic equation contains only the square of the unknown, it is called pure quadratic equation.
For example : (i) $x^{2}=4 \quad$ (ii) $3 x^{2}-8=0$, etc.

5.2 To examine the nature of the roots:

Examining the roots of a quadratic equation means to know the type of its roots i.e. whether they are real or imaginary, rational or irrational, equal or unequal.

The nature of the roots of a quadratic equation depends entirely on the value of its discriminant $b^{2}-4 a c$.

If for a quadratic equation $a x^{2}+b x+c=0$; where a, b and c are real numbers and $a \neq 0$, then discriminant :
(i) $b^{2}-4 a c=0 \Rightarrow$ the roots are real and equal.
(ii) $\boldsymbol{b}^{2}-4 a c>0 \Rightarrow$ the roots are real and unequal.
(iii) $b^{2}-4 a c<0 \Rightarrow$ the roots are imaginary (not real).

1. Every number, whether it is rational or irrational, is a real number. i.e.
(i) every rational number is a real number and
(ii) every irrational number is also a real number.
2. Square root of a negative number is an imaginary number.

Thus : each of $\sqrt{-4}, \sqrt{-8}, 2 \sqrt{-5}$, etc. is an imaginary number.

1 Without solving, examine the nature of the roots of the equations:
(i) $5 x^{2}-6 x+7=0$
(ii) $x^{2}+6 x+9=0$
(iii) $2 x^{2}+6 x+3=0$

Solution:

(i) Comparing given quadratic equation $5 x^{2}-6 x+7=0$ with equation $a x^{2}+b x+c=0$; we get : $a=5, b=-6$ and $c=7$.

$$
\begin{aligned}
\Rightarrow \text { Discriminant }=b^{2}-4 a c & =(-6)^{2}-4 \times 5 \times 7 \\
& =36-140=-104 ; \text { which is negative. }
\end{aligned}
$$

Since, a, b and c are real numbers; $a \neq 0$ and $b^{2}-4 a c<0$.
\therefore The roots are not real i.e. the roots are imaginary.
Ans.
(ii) Comparing quadratic equation $x^{2}+6 x+9=0$ with $a x^{2}+b x+c=0$; we get : $a=1, b=6$ and $c=9$

$$
\Rightarrow \quad b^{2}-4 a c=(6)^{2}-4 \times 1 \times 9=36-36=0
$$

Since; a, b and c are real numbers; $a \neq 0$ and $b^{2}-4 a c=0$.
\therefore The roots are real and equal.
Ans.
(iii) Comparing $2 x^{2}+6 x+3=0$ and $a x^{2}+b x+c$, we get : $a=2, b=6$ and $c=3$

$$
\begin{aligned}
b^{2}-4 a c & =(6)^{2}-4 \times 2 \times 3 \\
& =36-24=12 ; \text { which is positive. }
\end{aligned}
$$

Since; a, b and c are real numbers; $a \neq 0$ and $b^{2}-4 a c>0$.
\therefore The roots are real and unequal.
Ans.
2 Find the value of ' m ', if the roots of the following quadratic equation are equal: $(4+m) x^{2}+(m+1) x+1=0$.

Solution :

For the given equation $(4+m) x^{2}+(m+1) x+1=0$;
$a=4+m, b=m+1$ and $c=1$
Since, the roots are equal

$$
\begin{array}{rlrl}
\therefore \quad b^{2}-4 a c=0 & \Rightarrow & (m+1)^{2}-4(4+m) \times 1=0 \\
& \Rightarrow & m^{2}+2 m+1-16-4 m=0 \\
& \Rightarrow & & m^{2}-2 m-15=0
\end{array}
$$

On solving, we get : $\boldsymbol{m}=\mathbf{5}$ or $\boldsymbol{m}=\mathbf{- 3}$
Ans.

1. Without solving, comment upon the nature of roots of each of the following equations :
(i) $7 x^{2}-9 x+2=0$
(ii) $6 x^{2}-13 x+4=0$
(iii) $25 x^{2}-10 x+1=0$
(iv) $x^{2}+2 \sqrt{3} x-9=0$
(v) $x^{2}-a x-b^{2}=0$
(vi) $2 x^{2}+8 x+9=0$
2. Find the value of ' p ', if the following quadratic equations have equal roots :
(i) $4 x^{2}-(p-2) x+1=0$
(ii) $x^{2}+(p-3) x+p=0$
[2013]
3. The equation $3 x^{2}-12 x+(n-5)=0$ has equal roots. Find the value of n.
4. Find the value of ' m ', if the following equation has equal roots :

$$
(m-2) x^{2}-(5+m) x+16=0
$$

5. Find the value of k for which the equation $3 x^{2}-6 x+k=0$ has distinct and real root.
[2015]

5.3 Solving quadratic equations by factorisation :

Steps : (i) Clear all fractions and brackets, if necessary.
(ii) Transpose all the terms to the left hand side to get an equation in the form $a x^{2}+b x+c=0$.
(iii) Factorise the expression on the left hand side.
(iv) Put each factor equal to zero and solve.

Zero Product Rule : Whenever the product of two expressions is zero; at least one of the expressions is zero.

$$
\begin{array}{lrl}
\text { Thus, } & \text { if }(x+3)(x-2) & =0 \\
\Rightarrow & x+3=0, \text { or } x-2=0 \\
\Rightarrow & & x=-3, \text { or } x=2 .
\end{array}
$$

(3)
Solve : (i) $2 x^{2}-7 x=39$
(ii) $x^{2}=5 x$
(iii) $x^{2}=16$

Solution :
(i)

$$
2 x^{2}-7 x=39
$$

$\Rightarrow \quad 2 x^{2}-7 x-39=0$
$\Rightarrow \quad 2 x^{2}-13 x+6 x-39=0$
$\Rightarrow \quad x(2 x-13)+3(2 x-13)=0$ $(2 x-13)(x+3)=0$ $2 x-13=0$, or $x+3=0$ $\Rightarrow x=\frac{13}{2}$, or $x=-3$
[Expressing as $a x^{2}+b x+c=0$]
[Factorising the left hand side]
[Zero Product Rule]
Ans.
(ii) $x^{2}=5 x \Rightarrow$

$$
x^{2}-5 x=0
$$

$\Rightarrow \quad x(x-5)=0$
$\Rightarrow \quad x=0$, or $x-5=0$

$$
\Rightarrow \quad x=0, \text { or } x=5
$$

Ans.
(iii) $x^{2}=16 \Rightarrow \quad x^{2}-16=0$

$$
\begin{aligned}
& \Rightarrow \quad(x+4)(x-4)=0 \\
& \Rightarrow \\
& \Rightarrow \quad x+4=0, \text { or } x-4=0
\end{aligned}
$$

Alternative method :

$$
\begin{aligned}
x^{2} & =16 \\
\Rightarrow \quad x & = \pm 4
\end{aligned}
$$

$$
\Rightarrow \quad x=-4, \text { or } x=4 \text { Ans. } \Rightarrow \quad x=4 \text { or } x=-4 \text { Ans. }
$$

(4) Solve : $\frac{x}{x-1}+\frac{x-1}{x}=2 \frac{1}{2}$.

Solution :

$$
\begin{array}{rlrl}
& & \frac{x}{x-1}+\frac{x-1}{x} & =2 \frac{1}{2} \\
\Rightarrow & \frac{x^{2}+(x-1)^{2}}{x(x-1)} & =\frac{5}{2} \\
\Rightarrow & 2\left(x^{2}+x^{2}-2 x+1\right) & =5\left(x^{2}-x\right) \\
\Rightarrow & 4 x^{2}-4 x+2 & =5 x^{2}-5 x \\
\Rightarrow & -x^{2}+x+2 & =0 \\
\Rightarrow & x^{2}-x-2 & =0 \tag{ZeroProductRule}\\
\Rightarrow & & (x-2)(x+1) & =0 \\
\Rightarrow & x-2=0, \text { or } x+1 & =0 \\
\Rightarrow & x=2, \text { or } x & =-1
\end{array}
$$

$$
\Rightarrow \quad x^{2}-x-2=0 \quad \text { [Changing the sign of each term] }
$$

$$
\Rightarrow \quad(x-2)(x+1)=0 \quad \text { [On factorising] }
$$

Ans.
5 Find the quadratic equation whose solution set is $\{-2,3\}$.

Solution :

Since, solution set $=\{-2,3\}$
\Rightarrow Roots are -2 and 3
$\Rightarrow \quad x=-2$, or $x=3$
$\Rightarrow \quad x+2=0$, or $x-3=0$
$\Rightarrow \quad(x+2)(x-3)=0$
$\Rightarrow \quad x^{2}-3 x+2 x-6=0$
$\Rightarrow \quad x^{2}-x-6=0$; which is the required quadratic equation. Ans.
6 Use the substitution $x=3 y+1$ to solve for y, if $5(3 y+1)^{2}+6(3 y+1)-8=0$.
Solution :

$$
\begin{array}{rlrl}
& & 5(3 y+1)^{2}+6(3 y+1)-8 & =0 \\
\Rightarrow & 5 x^{2}+6 x-8 & =0 \\
\Rightarrow & & (x+2)(5 x-4) & =0 \\
\Rightarrow & x=-2, \text { or } x & =\frac{4}{5} \\
\text { When } x=-2 & \Rightarrow 3 y+1=-2 \Rightarrow y=-1 \\
& & & \\
& & & \\
& & & \\
\therefore y=-1, \text { or } y & =-\frac{1}{15}
\end{array}
$$

[Putting $3 y+1=x$]
[On factorising]

Ans.
(7) Without solving the quadratic equation $3 x^{2}-2 x-1=0$, find whether $x=1$ is a solution (root) of this equation or not.

Solution :

Substituting $x=1$ in the given equation $3 x^{2}-2 x-1=0$,
we get : $3(1)^{2}-2 \times 1-1=0$
$\Rightarrow \quad 3-2-1=0$; which is true.
$\therefore x=1$ is a solution of the given equation $3 x^{2}-2 x-1=0$
Ans.
8 Without solving equation $x^{2}-x+1=0$; find whether $x=-1$ is a root of this equation or not.

Solution :

Substituting $x=-1$ in the given equation $x^{2}-x+1=0$,
we get :
$(-1)^{2}-(-1)+1=0$
i.e. $\quad 1+1+1=0 \quad \Rightarrow \quad 3=0$; which is not true.
$\therefore x=-1$ is not a root of the given equation $x^{2}-x+1=0$
Ans.
9) Find the value of k for which $x=2$ is a root (solution) of equation $k x^{2}+2 x-3=0$

Solution :

Substituting $x=2$ in the given equation $k x^{2}+2 x-3=0$; we get :

$$
\begin{aligned}
k(2)^{2}+2 \times 2-3 & =0 \\
\Rightarrow \quad 4 k+4-3 & =0 \Rightarrow k=-\frac{1}{4}
\end{aligned}
$$

Ans.
10 If $x=2$ and $x=3$ are roots of the equation $3 x^{2}-2 m x+2 n=0$; find the values of m and n.

Solution :

$x=2$ is a root of the equation $3 x^{2}-2 m x+2 n=0$
$\Rightarrow \quad 3(2)^{2}-2 m \times 2+2 n=0$
$\Rightarrow \quad 12-4 m+2 n=0$
$\Rightarrow \quad-4 m+2 n=-12$ i.e. $2 m-n=6$
$x=3$ is a root of the equation $3 x^{2}-2 m x+2 n=0$
$\Rightarrow \quad 3(3)^{2}-2 m \times 3+2 n=0$
$\Rightarrow \quad 27-6 m+2 n=0$
$\Rightarrow \quad-6 m+2 n=-27 \quad$ i.e. $6 m-2 n=27$
On solving equations I and II, we get :

$$
m=7.5 \text { and } n=9
$$

Ans.

11 If one root of the quadratic equation $2 x^{2}+a x-6=0$ is 2 , find the value of a. Also, find the other root.

Solution:

Since, $x=2$ is a root of the given equation $2 x^{2}+a x-6=0$
$\Rightarrow \quad 2(2)^{2}+a \times 2-6=0$ i.e. $8+2 a-6=0$ and $a=-1 \quad$ Ans.
Substituting $a=-1$, we get :

$$
\begin{array}{rlrl}
& & 2 x^{2}+(-1) x-6 & =0 \\
\Rightarrow & 2 x^{2}-x-6 & =0 \\
\Rightarrow & 2 x^{2}-4 x+3 x-6 & =0 \\
\Rightarrow & 2 x(x-2)+3(x-2) & =0 \\
\Rightarrow & (x-2)(2 x+3) & =0 \quad\left[\because 2 x^{2}+a x-6=0\right] \\
\Rightarrow & & \text { The other root } & =\frac{-3}{2}
\end{array}
$$

12 Find the value of ' K ' for which $x=3$ is a solution of the quadratic equation, $(K+2) x^{2}-K x+6=0$
Hence, find the other root of the equation.

Solution :

$x=3$ is a solution of equation $(\mathrm{K}+2) x^{2}-\mathrm{K} x+6=0$
$\Rightarrow \quad(\mathrm{K}+2) \times 9-\mathrm{K} \times 3+6=0$
$\Rightarrow \quad 9 \mathrm{~K}+18-3 \mathrm{~K}+6=0 \quad$ i.e. $\quad 6 \mathrm{~K}=-24$ and $\mathrm{K}=-4$
Ans.
For $K=-4,(K+2) x^{2}-K x+6=0$
$\Rightarrow \quad-2 x^{2}+4 x+6=0 \quad$ i.e. $x^{2}-2 x-3=0$
$\Rightarrow \quad x^{2}-3 x+x-3=0 \quad$ i.e. $\quad x(x-3)+1(x-3)=0$
$\Rightarrow \quad(x-3)(x+1)=0 \quad$ i.e. $x=3$ or $x=-1$
Since, $x=3$ is already given to be one root (solution) of the equation.
\therefore The other root of the equation is $\boldsymbol{x}=\mathbf{- 1}$.
Ans.

EXERCISE 5(B)

Solve equations, number 1 to number 20, given below, using factorisation method :

1. $x^{2}-10 x-24=0$
2. $x^{2}-16=0$
3. $2 x^{2}-\frac{1}{2} x=0$
4. $x(x-5)=24$
5. $\frac{9}{2} x=5+x^{2}$
6. $\frac{6}{x}=1+x$
7. $x=\frac{3 x+1}{4 x}$
8. $x+\frac{1}{x}=2.5$
9. $(2 x-3)^{2}=49$
10. $2\left(x^{2}-6\right)=3(x-4)$
11. $(x+1)(2 x+8)=(x+7)(x+3)$
12. $x^{2}-(a+b) x+a b=0$
13. $(x+3)^{2}-4(x+3)-5=0$
14. $4(2 x-3)^{2}-(2 x-3)-14=0$
15. $\frac{3 x-2}{2 x-3}=\frac{3 x-8}{x+4}$
16. $2 x^{2}-9 x+10=0$, when :
(i) $x \in \mathrm{~N}$
(ii) $x \in \mathrm{Q}$.
17. $\frac{x-3}{x+3}+\frac{x+3}{x-3}=2 \frac{1}{2}$
18. $\frac{4}{x+2}-\frac{1}{x+3}=\frac{4}{2 x+1}$
19. $\frac{5}{x-2}-\frac{3}{x+6}=\frac{4}{x}$
20. $\left(1+\frac{1}{x+1}\right)\left(1-\frac{1}{x-1}\right)=\frac{7}{8}$
21. Find the quadratic equation, whose solution set is :
(i) $\{3,5\}$
(ii) $\{-2,3\}$
22.

(i) Solve : $\frac{x}{3}+\frac{3}{6-x}=\frac{2(6+x)}{15} ;(x \neq 6)$
(ii) Solve the equation $9 x^{2}+\frac{3 x}{4}+2=0$, if possible, for real values of x.
23. Find the value of x, if $a+1=0$ and $x^{2}+a x-6=0$.
24. Find the value of x, if $a+7=0$;
$b+10=0$ and $12 x^{2}=a x-b$.
25. Use the substitution $y=2 x+3$ to solve for x, if $4(2 x+3)^{2}-(2 x+3)-14=0$.
26. Without solving the quadratic equation $6 x^{2}-x-2=0$, find whether $x=\frac{2}{3}$ is a solution of this equation or not.
27. Determine whether $x=-1$ is a root of the equation $x^{2}-3 x+2=0$ or not.
28. If $x=\frac{2}{3}$ is a solution of the quadratic equation $7 x^{2}+m x-3=0$; find the value of m.
29. If $x=-3$ and $x=\frac{2}{3}$ are solutions of quadratic equation $m x^{2}+7 x+n=0$, find the values of m and n.
30. If quadratic equation $x^{2}-(m+1) x+6=0$ has one root as $x=3$; find the value of m and the other root of the equation.
31. Given that 2 is a root of the equation $3 x^{2}-p(x+1)=0$ and that the equation $p x^{2}-q x+9=0$ has equal roots, find the values of p and q.
32. Solve : $\frac{x}{a}-\frac{a+b}{x}=\frac{b(a+b)}{a x}$.
33. Solve : $\left(\frac{1200}{x}+2\right)(x-10)-1200=60$.
34. If -1 and 3 are the roots of $x^{2}+p x+q=0$, find the values of p and q.

5.4 Solving quadratic equations using the formula :

The roots of the quadratic equation $a x^{2}+b x+c=0$; where $a \neq 0$ can be obtained by using the formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Proof:

$$
a x^{2}+b x+c=0
$$

Given :
$\Rightarrow \quad 4 a^{2} x^{2}+4 a b x+4 a c=0 \quad$ [On multiplying each term by $4 a$]
$\Rightarrow(2 a x)^{2}+2 \times 2 a x \times b+b^{2}-b^{2}+4 a c=0$
$\Rightarrow \quad(2 a x+b)^{2}-b^{2}+4 a c=0$
$\Rightarrow \quad(2 a x+b)^{2}=b^{2}-4 a c$

$$
\begin{aligned}
& \Rightarrow \quad 2 a x+b= \pm \sqrt{b^{2}-4 a c} \\
& \Rightarrow \quad 2 a x=-b \pm \sqrt{b^{2}-4 a c} \Rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

Ans.

13 Solve each of the following equations by using the formula :
(i) $5 x^{2}-2 x-3=0$
(ii) $x^{2}=18 x-77$
(iii) $\sqrt{3} x^{2}+11 x+6 \sqrt{3}=0$.

Solution :

(i) Comparing $5 x^{2}-2 x-3=0$ with $a x^{2}+b x+c=0$, we get :

$$
a=5, b=-2 \text { and } c=-3
$$

$$
\begin{aligned}
\text { and so, } x & =\frac{2 \pm \sqrt{(-2)^{2}-4 \times 5 \times-3}}{2 \times 5} \quad\left[\because x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right] \\
& =\frac{2 \pm \sqrt{64}}{10}=\frac{2 \pm 8}{10}=\frac{2+8}{10}, \text { or } \frac{2-8}{10}=1, \text { or }-\frac{3}{5} \quad \text { Ans. }
\end{aligned}
$$

(ii) $x^{2}=18 x-77=0 \Rightarrow x^{2}-18 x+77=0$

Comparing with $a x^{2}+b x+c=0$, we get : $a=1, b=-18$ and $c=77$

$$
\begin{aligned}
\therefore x & =\frac{18 \pm \sqrt{(-18)^{2}-4 \times 1 \times 77}}{2 \times 1} \quad\left[\because x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right] \\
& =\frac{18 \pm \sqrt{16}}{2}=\frac{18+4}{2}, \text { or } \frac{18-4}{2}=11, \text { or } 7 \quad \text { Ans. }
\end{aligned}
$$

(iii) $\sqrt{3} x^{2}+11 x+6 \sqrt{3}=0 \Rightarrow a=\sqrt{3}, b=11$ and $c=6 \sqrt{3}$

$$
\begin{aligned}
\therefore x & =\frac{-11 \pm \sqrt{(11)^{2}-4 \times \sqrt{3} \times 6 \sqrt{3}}}{2 \times \sqrt{3}} \quad\left[\because x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right] \\
& =\frac{-11 \pm \sqrt{49}}{2 \sqrt{3}}=\frac{-11+7}{2 \sqrt{3}}, \text { or } \frac{-11-7}{2 \sqrt{3}} \\
& =\frac{-4}{2 \sqrt{3}}, \text { or } \frac{-18}{2 \sqrt{3}} \\
& =-\frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}, \text { or } \frac{-9}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \quad \text { [Rationalizing the denominators] } \\
& =-\frac{2 \sqrt{3}}{3}, \text { or }-3 \sqrt{3} \quad \text { Ans. }
\end{aligned}
$$

14 Solve each of the following equations for x and give, in each case, your answer correct to 2 decimal places :
(i) $x^{2}-10 x+6=0$
(ii) $3 x^{2}+5 x-9=0$

Solution :

(i)

$$
\begin{aligned}
x^{2}-10 x+6 & =0 \Rightarrow a=1, b=-10 \text { and } c=6 \\
\therefore b^{2}-4 a c & =(-10)^{2}-4 \times 1 \times 6 \\
& =100-24=76 \\
\Rightarrow \sqrt{b^{2}-4 a c} & =\sqrt{76}=8.718 \\
\therefore x & =\frac{10 \pm 8.718}{2 \times 1} \quad\left[\because x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right] \\
& =\frac{10+8.718}{2}, \text { or } \frac{10-8.718}{2} \\
& =9.359, \text { or } 0.641 \\
& =9.36, \text { or } 0.64 \quad \text { [Correct to } 2 \text { decimal places] Ans. }
\end{aligned}
$$

(ii) $3 x^{2}+5 x-9=0 \Rightarrow a=3, b=5$ and $c=-9$

$$
\begin{aligned}
\therefore b^{2}-4 a c & =(5)^{2}-4 \times 3 \times-9 \\
& =25+108=133 \\
\Rightarrow \sqrt{b^{2}-4 a c} & =\sqrt{133}=11.533 \\
\therefore x & =\frac{-5 \pm 11.533}{2 \times 3} \quad\left[\because x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right] \\
& =\frac{-5+11.533}{6}, \text { or } \frac{-5-11.533}{6} \\
& =1.089, \text { or }-2.756 \quad \\
& =1.09, \text { or }-2.76 \quad[\text { Correct to } 2 \text { decimal places] Ans. }
\end{aligned}
$$

15 Solve the following equation:
$x-\frac{18}{x}=6$. Give your answer correct to two significant figures.
[2011]

Solution :

$$
\begin{aligned}
x-\frac{18}{x}=6 & \Rightarrow & x^{2}-18 & =6 x \\
& \Rightarrow & x^{2}-6 x-18 & =0
\end{aligned}
$$

Comparing with $a x^{2}+b x+c=0$, we get : $a=1, b=-6$ and $c=-18$.

$$
\therefore \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
=\frac{6 \pm \sqrt{36-4 \times 1 \times-18}}{2 \times 1}=\frac{6 \pm 10 \cdot 392}{2}
$$

$$
=\frac{16 \cdot 392}{2} \text { or } \frac{-4 \cdot 392}{2}
$$

$$
=8.196 \text { or }-2.196=8.2 \text { or }-2.2
$$

Ans.

5.5 Equations Reducible to Quadratic Equations:

16 Solve : (i) $2 x^{4}-5 x^{2}+3=0 \quad$ (ii) $\left(x^{2}+3 x\right)^{2}-\left(x^{2}+3 x\right)-6=0, x \in R$

Solution :

(i)

$$
\begin{aligned}
2 x^{4}-5 x^{2}+3 & =0 \\
& \Rightarrow 2 y^{2}-5 y+3=0 \\
& \Rightarrow(y-1)(2 y-3)=0 \\
& \Rightarrow y=1, \text { or } y=\frac{3}{2} \\
\text { When } y=1 & \Rightarrow x^{2}=1 \Rightarrow x= \pm 1
\end{aligned}
$$

$$
\Rightarrow 2 y^{2}-5 y+3=0 \quad\left[\text { Taking } x^{2}=y\right]
$$

and, when $y=\frac{3}{2} \Rightarrow x^{2}=\frac{3}{2} \Rightarrow x= \pm \sqrt{\frac{3}{2}}= \pm \frac{\sqrt{3}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}= \pm \frac{\sqrt{6}}{2}$
\therefore Required solution $=1,-1, \frac{\sqrt{6}}{2}$, or $-\frac{\sqrt{6}}{2}$
Ans.
(ii) $\left(x^{2}+3 x\right)^{2}-\left(x^{2}+3 x\right)-6=0$

$$
\begin{array}{rlr}
& \Rightarrow \quad y^{2}-y-6=0 & \text { [Taking } \left.x^{2}+3 x=y\right] \\
& \Rightarrow(y-3)(y+2)=0 \\
& \Rightarrow y=3, \text { or } \quad y=-2
\end{array} \quad \text { [On factorising] }
$$

and $y=-2 \Rightarrow x^{2}+3 x=-2 \Rightarrow x^{2}+3 x+2=0$

$$
\begin{aligned}
\Rightarrow \quad x & =\frac{-3 \pm \sqrt{(3)^{2}-4 \times 1 \times 2}}{2 \times 1} \\
& =\frac{-3 \pm 1}{2}=\frac{-3+1}{2} \text { or } \frac{-3-1}{2}=-1 \text { or }-2
\end{aligned}
$$

\therefore Required solution is : $\frac{-3+\sqrt{21}}{2}, \frac{-3-\sqrt{21}}{2},-1$, or -2
Ans.

17 Solve : $\sqrt{\frac{x}{1-x}}+\sqrt{\frac{1-x}{x}}=2 \frac{1}{6}, x \neq 0$ and $x \neq 1$.

Solution :

$$
\text { Let } \sqrt{\frac{x}{1-x}}=y \Rightarrow \sqrt{\frac{1-x}{x}}=\frac{1}{y}
$$

\therefore Given equation reduces to :

$$
\begin{aligned}
\begin{aligned}
y+\frac{1}{y}=\frac{13}{6} & \Rightarrow 6 y^{2}+6=13 y \\
& \Rightarrow 6 y^{2}-13 y+6=0 \\
& \Rightarrow(2 y-3)(3 y-2)=0 \\
& \Rightarrow y=\frac{3}{2}, \text { or } y=\frac{2}{3} \\
\text { When } y=\frac{3}{2} & \Rightarrow \sqrt{\frac{x}{1-x}}=\frac{3}{2} \Rightarrow \frac{x}{1-x}=\frac{9}{4} \\
& \Rightarrow 4 x=9-9 x \Rightarrow x=\frac{9}{13}
\end{aligned},=\text { }
\end{aligned}
$$

[On factorising]

$$
\text { and } \begin{aligned}
y=\frac{2}{3} & \Rightarrow \sqrt{\frac{x}{1-x}}=\frac{2}{3} \Rightarrow \frac{x}{1-x}=\frac{4}{9} \\
& \Rightarrow 9 x=4-4 x \Rightarrow x=\frac{4}{13}
\end{aligned}
$$

\therefore Required solution is : $\frac{9}{13}$, or $\frac{4}{13}$
Ans.

EXERCISE 5(C)

1. Solve, each of the following equations, using the formula :
(i) $x^{2}-6 x=27$
(ii) $x^{2}-10 x+21=0$
(iii) $x^{2}+6 x-10=0$
(iv) $x^{2}+2 x-6=0$
(v) $3 x^{2}+2 x-1=0$.
(vi) $2 x^{2}+7 x+5=0$
(vii) $\frac{2}{3} x=-\frac{1}{6} x^{2}-\frac{1}{3}$
(viii) $\frac{1}{15} x^{2}+\frac{5}{3}=\frac{2}{3} x$
(ix) $x^{2}-6=2 \sqrt{2} x$
(x) $\frac{4}{x}-3=\frac{5}{2 x+3}$
(xi) $\frac{2 x+3}{x+3}=\frac{x+4}{x+2}$
(xii) $\sqrt{6} x^{2}-4 x-2 \sqrt{6}=0$
(xiii) $\frac{2 x}{x-4}+\frac{2 x-5}{x-3}=8 \frac{1}{3}$
(xiv) $\frac{x-1}{x-2}+\frac{x-3}{x-4}=3 \frac{1}{3}$
2. Solve each of the following equations for x and give, in each case, your answer correct to one decimal place :
(i) $x^{2}-8 x+5=0$
(ii) $5 x^{2}+10 x-3=0$
3. Solve each of the following equations for x and give, in each case, your answer correct to 2 decimal places :
(i) $2 x^{2}-10 x+5=0$
(ii) $4 x+\frac{6}{x}+13=0$
(iii) $x^{2}-3 x-9=0$
[2007]
(iv) $x^{2}-5 x-10=0$
[2013]
4. Solve each of the following equations for x, giving your answer correct to 3 decimal places:
(i) $3 x^{2}-12 x-1=0$
(ii) $x^{2}-16 x+6=0$
(iii) $2 x^{2}+11 x+4=0$
5. Solve :
(i) $x^{4}-2 x^{2}-3=0$
(ii) $x^{4}-10 x^{2}+9=0$
6. Solve :
(i) $\left(x^{2}-x\right)^{2}+5\left(x^{2}-x\right)+4=0$
(ii) $\left(x^{2}-3 x\right)^{2}-16\left(x^{2}-3 x\right)-36=0$
7. Solve :
(i) $\sqrt{\frac{x}{x-3}}+\sqrt{\frac{x-3}{x}}=\frac{5}{2}$
(ii) $\left(\frac{2 x-3}{x-1}\right)-4\left(\frac{x-1}{2 x-3}\right)=3$
(iii) $\left(\frac{3 x+1}{x+1}\right)+\left(\frac{x+1}{3 x+1}\right)=\frac{5}{2}$
8. Solve the equation $2 x-\frac{1}{x}=7$. Write your answer correct to two decimal places.
[2006]
9. Solve the following equation and give your answer correct to 3 significant figures :
$5 x^{2}-3 x-4=0$
[2012]
10. Solve for x using the quadratic formula. Write your answer correct to two significant figures. $(x-1)^{2}-3 x+4=0$.
[2014]

18 Find the solution set of the equation $3 x^{2}-8 x-3=0$; when :
(i) $x \in Z$ (integers) \quad (ii) $x \in Q$ (rational numbers).

Solution :

$$
\begin{aligned}
3 x^{2}-8 x-3=0 & \Rightarrow & 3 x^{2}-9 x+x-3=0 \\
& \Rightarrow & 3 x(x-3)+1(x-3)=0 \\
& \Rightarrow & (x-3)(3 x+1)=0 \\
& \Rightarrow & x=3, \text { or } x=-\frac{1}{3}
\end{aligned}
$$

(i) When $x \in Z$, the solution set $=\{3\}$

Ans.
(ii) When $x \in \mathrm{Q}$, the solution set $=\left\{\mathbf{3},-\frac{1}{3}\right\}$

Ans.

19 Solve: $(2 x-3)^{2}=25$.

Solution :

$$
\begin{array}{rlr}
(2 x-3)^{2}=25 & \Rightarrow & 4 x^{2}-12 x+9-25=0 \\
& \Rightarrow & 4 x^{2}-12 x-16=0 \\
& \Rightarrow & x^{2}-3 x-4=0 \\
& \Rightarrow & (x-4)(x+1)=0 \\
& \Rightarrow & x=4, \text { or } x=-1
\end{array}
$$

Ans.

Alternative method :

$$
\begin{array}{rlrlrl}
(2 x-3)^{2} & =25 & \Rightarrow & 2 x-3 & = \pm 5 \\
\text { Now, } 2 x-3 & =5 & & \Rightarrow & 2 x & =8 \text { and } x=4 \\
\text { And, } 2 x-3 & =-5 & \Rightarrow & 2 x & =-2 \text { and } x=-1 \\
& & \therefore & x & =4, \text { or } x=-1
\end{array}
$$

20 Solve for x : $4\left(x-\frac{1}{x}\right)^{2}+8\left(x+\frac{1}{x}\right)=29 . x \neq 0$.

Solution :

Ans.
21. Solve : $\frac{a}{a x-1}+\frac{b}{b x-1}=a+b$, where $a+b \neq 0, a b \neq 0$.

Solution :

$$
\frac{a}{a x-1}+\frac{b}{b x-1}=a+b \Rightarrow \frac{a}{a x-1}-b+\frac{b}{b x-1}-a=0
$$

i.e.

$$
\frac{a-a b x+b}{a x-1}+\frac{b-a b x+a}{b x-1}=0
$$

$$
\Rightarrow \quad(a+b-a b x)\left[\frac{1}{a x-1}+\frac{1}{b x-1}\right]=0
$$

$\Rightarrow a+b-a b x=0, \quad$ or $\quad \frac{1}{a x-1}+\frac{1}{b x-1}=0$

$$
\begin{aligned}
& \text { Let } x+\frac{1}{x}=y \\
& \because\left(x+\frac{1}{x}\right)^{2}-\left(x-\frac{1}{x}\right)^{2}=4 \quad \Rightarrow \quad y^{2}-\left(x-\frac{1}{x}\right)^{2}=4 \\
& \text { and }\left(x-\frac{1}{x}\right)^{2}=y^{2}-4 \\
& \therefore 4\left(x-\frac{1}{x}\right)^{2}+8\left(x+\frac{1}{x}\right)=29 \quad \Rightarrow \quad 4\left(y^{2}-4\right)+8 y=29 \\
& \Rightarrow \quad 4 y^{2}-16+8 y=29 \\
& \Rightarrow \quad 4 y^{2}+8 y-45=0 \\
& \Rightarrow 4 y^{2}+18 y-10 y-45=0 \text { i.e. } 2 y(2 y+9)-5(2 y+9)=0 \\
& \Rightarrow(2 y+9)(2 y-5)=0 \\
& \text { i.e. } y=-\frac{9}{2} \text { or } y=\frac{5}{2} \\
& y=-\frac{9}{2} \Rightarrow x+\frac{1}{x}=-\frac{9}{2} \text { i.e. } 2 x^{2}+9 x+2=0 \\
& \Rightarrow \quad x=\frac{-9 \pm \sqrt{(9)^{2}-4 \times 2 \times 2}}{2 \times 2}=\frac{-9 \pm \sqrt{65}}{4} \\
& y=\frac{5}{2} \Rightarrow x+\frac{1}{x}=\frac{5}{2} \text { i.e. } 2 x^{2}-5 x+2=0 \\
& \Rightarrow \quad 2 x^{2}-4 x-x+2=0 \quad \text { i.e. } 2 x(x-2)-1(x-2)=0 \\
& \Rightarrow \quad(x-2)(2 x-1)=0 \text { i.e. } x=2 \text { or } x=\frac{1}{2} \\
& \therefore \quad \text { Solution }=\frac{-9 \pm \sqrt{65}}{4}, 2 \text {, or } \frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad-a b x=-a-b, \quad \text { or } \\
& \Rightarrow \quad a b x=a+b, \quad \text { or } \\
& \Rightarrow \quad x=\frac{a+b}{a b}, \quad \text { or } \\
& \frac{1}{a x-1}=-\frac{1}{b x-1} \\
& b x-1=-a x+1 \\
& x=\frac{2}{a+b}
\end{aligned}
$$

Ans.

EXERCISE 5(D)

Solve each of the following equations :

1. $\frac{2 x}{x-3}+\frac{1}{2 x+3}+\frac{3 x+9}{(x-3)(2 x+3)}=0$;

$$
x \neq 3, x \neq-\frac{3}{2}
$$

2. $(2 x+3)^{2}=81$
3. $a^{2} x^{2}-b^{2}=0$
4. $x^{2}-\frac{11}{4} x+\frac{15}{8}=0$
5. $x+\frac{4}{x}=-4 ; x \neq 0$
6. $2 x^{4}-5 x^{2}+3=0$

Take $x^{2}=y$
7. $x^{4}-2 x^{2}-3=0$
8. $9\left(x^{2}+\frac{1}{x^{2}}\right)-9\left(x+\frac{1}{x}\right)-52=0$

Let $x+\frac{1}{x}=y \Rightarrow x^{2}+\frac{1}{x^{2}}+2=y^{2}$
$\Rightarrow x^{2}+\frac{1}{x^{2}}=y^{2}-2$.
\therefore Given equation reduces to :

$$
9\left(y^{2}-2\right)-9 y-52=0
$$

i.e. $9 y^{2}-9 y-70=0$
$\Rightarrow(3 y-10)(3 y+7)=0$
$\Rightarrow y=\frac{10}{3}$, or $y=-\frac{7}{3}$.

$$
y=\frac{10}{3} \Rightarrow x+\frac{1}{x}=\frac{10}{3},
$$

solve it to get $x=3$, or $\frac{1}{3}$.
Similarly $y=-\frac{7}{3} \Rightarrow x+\frac{1}{x}=-\frac{7}{3}$,
solve it to get $x=\frac{-7 \pm \sqrt{13}}{6}$.
\therefore The solution is $3, \frac{1}{3}, \frac{-7 \pm \sqrt{13}}{6}$
9. $2\left(x^{2}+\frac{1}{x^{2}}\right)-\left(x+\frac{1}{x}\right)=11$
10. $\left(x^{2}+\frac{1}{x^{2}}\right)-3\left(x-\frac{1}{x}\right)-2=0$

Let $x-\frac{1}{x}=y \Rightarrow x^{2}+\frac{1}{x^{2}}=y^{2}+2$
11. $\left(x^{2}+5 x+4\right)\left(x^{2}+5 x+6\right)=120$

$$
\text { Take } x^{2}+5 x=y
$$

12. Solve each of the following equations, giving answer upto two decimal places.
(i) $x^{2}-5 x-10=0$
[2005]
(ii) $3 x^{2}-x-7=0$
[2004]
13. Solve: $\left(\frac{x}{x+2}\right)^{2}-7\left(\frac{x}{x+2}\right)+12=0 ; x \neq-2$.
14. Solve :
(i) $x^{2}-11 x-12=0$; when $x \in \mathrm{~N}$
(ii) $x^{2}-4 x-12=0$; when $x \in \mathrm{I}$
(iii) $2 x^{2}-9 x+10=0$; when $x \in \mathrm{Q}$.
15. Solve :
$(a+b)^{2} x^{2}-(a+b) x-6=0 ; a+b \neq 0$.
Take : $(a+b) x=y$
16. Solve : $\frac{1}{p}+\frac{1}{q}+\frac{1}{x}=\frac{1}{x+p+q}$

Take : $\left(\frac{1}{p}+\frac{1}{q}\right)+\left(\frac{1}{x}-\frac{1}{x+p+q}\right)=0$
17. Solve :
(i) $x(x+1)+(x+2)(x+3)=42$
(ii) $\frac{1}{x+1}-\frac{2}{x+2}=\frac{3}{x+3}-\frac{4}{x+4}$
18. For each equation, given below, find the value of ' m ' so that the equation has equal roots. Also, find the solution of each equation :
(i) $(m-3) x^{2}-4 x+1=0$
(ii) $3 x^{2}+12 x+(m+7)=0$
(iii) $x^{2}-(m+2) x+(m+5)=0$
19. Without solving the following quadratic equation, find the value of ' p ' for which the roots are equal.
$p x^{2}-4 x+3=0$
20. Without solving the following quadratic equation, find the value of ' m ' for which the given equation has real and equal roots.

$$
\begin{equation*}
x^{2}+2(m-1) x+(m+5)=0 \tag{2012}
\end{equation*}
$$

