Section and Mid-Point Formula

13.1 Introduction:

For any two known (given) points in a co-ordinate (Cartesian) plane, the knowledge of co-ordinate geometry may be used to find :
(i) the distance between the given points,
(ii) the co-ordinates of a point which divides the line joining the given points in a given ratio,
(iii) the co-ordinates of the mid-point of the line segment joining the two given points,
(iv) equation of the straight line through the given points,
(v) equation of the perpendicular bisector of the line segment obtained on joining the given two points, etc.

13.2 The Section Formula :

To find the co-ordinates of a point which divides the line segment joining two given points in a given ratio.
(If a point P lies in a line segment joining the points A and B , then P divides AB in the ratio $\mathrm{AP}: \mathrm{PB}$).

Let AB be a line joining the points $\mathrm{A}=\left(x_{1}, y_{1}\right)$ and $\mathrm{B}=\left(x_{2}, y_{2}\right)$ and point P divides the line segment AB in the ratio $m_{1}: m_{2}$.

$$
\text { i.e. } \quad \frac{\mathrm{AP}}{\mathrm{~PB}}=\frac{m_{1}}{m_{2}}
$$

Required to find : The co-ordinates of point P.

$$
\text { Let } \mathrm{P}=(x, y)
$$

Draw AL, PM and BN perpendiculars on the x-axis. Thus, AL, PM and BN are parallel lines. It is clear from the figure that :

$$
\begin{aligned}
\mathrm{AR} & =\mathrm{LM}=\mathrm{OM}-\mathrm{OL}=x-x_{1} ; \\
\mathrm{PR} & =\mathrm{PM}-\mathrm{RM}=\mathrm{PM}-\mathrm{AL}=y-y_{1} ; \\
\mathrm{PS} & =\mathrm{MN}=\mathrm{ON}-\mathrm{OM}=x_{2}-x \\
\text { and, } \mathrm{BS} & =\mathrm{BN}-\mathrm{SN}=\mathrm{BN}-\mathrm{PM}=y_{2}-y
\end{aligned}
$$

Since, $\triangle \mathrm{APR}$ and Δ PBS are similar.

$$
\begin{array}{rlrl}
\therefore \frac{\mathrm{AR}}{\mathrm{PS}}=\frac{\mathrm{PR}}{\mathrm{BS}} & =\frac{\mathrm{AP}}{\mathrm{~PB}} \quad \text { [Corresponding sides of similar } \Delta \mathrm{s} \text { are in proportion] } \\
\frac{\mathrm{AR}}{\mathrm{PS}}=\frac{\mathrm{AP}}{\mathrm{~PB}} & \Rightarrow \quad \frac{x-x_{1}}{x_{2}-x} & =\frac{m_{1}}{m_{2}} \\
& \Rightarrow m_{2} x-m_{2} x_{1} & =m_{1} x_{2}-m_{1} x \\
& \Rightarrow m_{1} x+m_{2} x & =m_{1} x_{2}+m_{2} x_{1} \\
& \Rightarrow x\left(m_{1}+m_{2}\right) & =m_{1} x_{2}+m_{2} x_{1} \\
& \therefore \quad \text { [By cross multiplication] } \\
& \therefore \quad x & =\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}
\end{array}
$$

Since,

$$
\frac{\mathrm{PR}}{\mathrm{BS}}=\frac{\mathrm{AP}}{\mathrm{~PB}} \Rightarrow \frac{y-y_{1}}{y_{2}-y}=\frac{m_{1}}{m_{2}} \Rightarrow y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}
$$

\therefore Co-ordinates of $\mathrm{P}=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)$

1 Find the co-ordinates of point P which divides the join of $A(4,-5)$ and B $(6,3)$ in the ratio $2: 5$.

Solution :

Let the co-ordinates of P be (x, y)
$\therefore \quad x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}=\frac{2 \times 6+5 \times 4}{2+5}=\frac{32}{7}$
and, $y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}=\frac{2 \times 3+5 \times-5}{2+5}=\frac{-19}{7}$
$\therefore \quad P=\left(\frac{32}{7}, \frac{-19}{7}\right)$

Conversely, to find the ratio in which the line joining the two points is divided by a given point.

2 Find the ratio in which the point $(5,4)$ divides the line joining points $(2,1)$ and $(7,6)$.

Solution :

Let the required ratio be $m_{1}: m_{2}$
Take $(2,1)=\left(x_{1}, y_{1}\right) ;(7,6)=\left(x_{2}, y_{2}\right)$ and $(5,4)=(x, y)$

$$
x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}} \Rightarrow \quad 5=\frac{m_{1} \times 7+m_{2} \times 2}{m_{1}+m_{2}}
$$

$$
\begin{array}{rlrl}
\Rightarrow & 5 m_{1}+5 m_{2} & =7 m_{1}+2 m_{2} \\
\Rightarrow & 2 m_{1} & =3 m_{2} \\
\Rightarrow & & \frac{m_{1}}{m_{2}} & =\frac{3}{2}
\end{array}
$$

\therefore The required ratio is $3: \mathbf{2}$.
Ans.

Alternative method :

In order to find the ratio in which the join of two given $\mid m_{1}: m_{2}$ points is divided by a third point, take $m_{1}: m_{2}=k: 1$.
By doing so, two unknowns m_{1} and m_{2} are reduced to one unknown i.e. k and the section formula becomes :
$x=\frac{k x_{2}+x_{1}}{k+1}$ and $y=\frac{k y_{2}+y_{1}}{k+1}$
$=\frac{m_{1}}{m_{2}}: \frac{m_{2}}{m_{2}}$
$=k: 1$
$\therefore k=\frac{m_{1}}{m_{2}}$

Let the required ratio be $k: 1\left(=m_{1}: m_{2}\right)$.

$$
\begin{aligned}
& \therefore x=\frac{k x_{2}+x_{1}}{k+1} \quad \Rightarrow \quad 5=\frac{k \times 7+2}{k+1} \\
& \Rightarrow 5 k+5=7 k+2 \\
& \Rightarrow \quad 2 k=3 \\
& \Rightarrow \quad k=\frac{3}{2}
\end{aligned}
$$

\therefore The required ratio $=k: 1=\frac{3}{2}: 1=3: 2$
Ans.

3 In what ratio is the line joining the points $(4,2)$ and $(3,-5)$ divided by the x-axis ? Also, find the co-ordinates of the point of intersection.

Solution :

Let the required ratio be $k: 1$ and the point on the x-axis be $(x, 0)$.
Since, $\quad y=\frac{k y_{2}+y_{1}}{k+1}$
$\left[\right.$ Taking $(4,2)=\left(x_{1}, y_{1}\right)$ and $\left.(3,-5)=\left(x_{2}, y_{2}\right)\right]$
$\Rightarrow \quad 0=\frac{k \times-5+2}{k+1}$
$\Rightarrow \quad 0=-5 k+2$
$\Rightarrow \quad k=\frac{2}{5}$
$\Rightarrow \quad m_{1}: m_{2}=2: 5$
Now, $\quad x=\frac{2 \times 3+5 \times 4}{2+5}$

$$
=\frac{26}{7}
$$

\therefore The ratio $=2: 5$ and the required point of intersection $=\left(\frac{26}{7}, 0\right)$
Ans.
(4) Calculate the ratio in which the line joining the points $(4,6)$ and $(-5,-4)$ is divided by the line $y=3$. Also, find the co-ordinates of the point of intersection.

Solution :

The co-ordinates of every point on the line $y=3$ will be of the type $(x, 3)$.
Now, $y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}} \quad\left[\right.$ Taking : $(x, 3)=(x, y),(4,6)=\left(x_{1}, y_{1}\right)$ and $\left.(-5,-4)=\left(x_{2}, y_{2}\right)\right]$
$\Rightarrow \quad 3=\frac{m_{1} \times-4+m_{2} \times 6}{m_{1}+m_{2}}$
$\Rightarrow \quad 3 m_{1}+3 m_{2}=-4 m_{1}+6 m_{2} \quad \Rightarrow \quad 7 m_{1}=3 m_{2} \quad \Rightarrow \quad \frac{m_{1}}{m_{2}}=\frac{3}{7}$
\therefore The required ratio is $3: 7$
Ans.
Now, $x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}} \Rightarrow x=\frac{3 \times-5+7 \times 4}{3+7}=\frac{13}{10}$
\therefore The required point of intersection $=\left(\frac{13}{10}, 3\right)$
Ans.
(5) The origin $O, B(-6,9)$ and $C(12,-3)$ are vertices of triangle $O B C$. Point P divides $O B$ in the ratio $1: 2$ and point Q divides $O C$ in the ratio $1: 2$. Find the co-ordinates of points P and Q. Also, show that : $P Q=\frac{1}{3} B C$.

Solution :

For point P : $m_{1}: m_{2}=1: 2,\left(x_{1}, y_{1}\right)=(0,0)$ and $\left(x_{2}, y_{2}\right)=(-6,9)$
$\therefore \mathrm{P}=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)$

$$
=\left(\frac{1 \times-6+2 \times 0}{1+2}, \frac{1 \times 9+2 \times 0}{1+2}\right)
$$

$$
=(-2,3)
$$

For point $\mathrm{Q}: m_{1}: m_{2}=1: 2,\left(x_{1}, y_{1}\right)=(0,0)$ and $\left(x_{2}, y_{2}\right)=(12,-3)$

$$
\therefore \quad \mathrm{Q}=\left(\frac{1 \times 12+2 \times 0}{1+2}, \frac{1 \times-3+2 \times 0}{1+2}\right)=(4,-1)
$$

Ans.
Now $\mathrm{PQ}=$ Distance between $\mathrm{P}(-2,3)$ and $\mathrm{Q}(4,-1)$

$$
=\sqrt{(4+2)^{2}+(-1-3)^{2}}=\sqrt{36+16}=\sqrt{52}=2 \sqrt{13}
$$

and, $\quad \mathrm{BC}=\sqrt{(12+6)^{2}+(-3-9)^{2}}=\sqrt{324+144}=\sqrt{468}=6 \sqrt{13}$

$$
P Q=2 \sqrt{13} \text { and } B C=6 \sqrt{13} \Rightarrow P Q=\frac{1}{3} B C
$$

Ans.
(4) Calculate the ratio in which the line joining the points $(4,6)$ and $(-5,-4)$ is divided by the line $y=3$. Also, find the co-ordinates of the point of intersection.

Solution :

The co-ordinates of every point on the line $y=3$ will be of the type $(x, 3)$.
Now, $y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}} \quad$ [Taking: $(x, 3)=(x, y),(4,6)=\left(x_{1}, y_{1}\right)$ and $(-5,-4)=\left(x_{2}, y_{2}\right)$]
$\Rightarrow \quad 3=\frac{m_{1} \times-4+m_{2} \times 6}{m_{1}+m_{2}}$
$\Rightarrow 3 m_{1}+3 m_{2}=-4 m_{1}+6 m_{2} \quad \Rightarrow \quad 7 m_{1}=3 m_{2} \quad \Rightarrow \quad \frac{m_{1}}{m_{2}}=\frac{3}{7}$
\therefore The required ratio is $3: 7$
Ans.
Now, $x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}} \Rightarrow x=\frac{3 \times-5+7 \times 4}{3+7}=\frac{13}{10}$
\therefore The required point of intersection $=\left(\frac{13}{10}, 3\right)$
Ans.
5 The origin $O, B(-6,9)$ and $C(12,-3)$ are vertices of triangle $O B C$. Point P divides $O B$ in the ratio $1: 2$ and point Q divides $O C$ in the ratio 1:2. Find the co-ordinates of points P and Q. Also, show that : $P Q=\frac{1}{3} B C$.

Solution:

For point P : $m_{1}: m_{2}=1: 2,\left(x_{1}, y_{1}\right)=(0,0)$ and $\left(x_{2}, y_{2}\right)=(-6,9)$
$\therefore \mathrm{P}=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)$
$=\left(\frac{1 \times-6+2 \times 0}{1+2}, \frac{1 \times 9+2 \times 0}{1+2}\right)$ $=(-2,3)$

For point $Q: m_{1}: m_{2}=1: 2,\left(x_{1}, y_{1}\right)=(0,0)$ and $\left(x_{2}, y_{2}\right)=(12,-3)$

$$
\therefore \quad Q=\left(\frac{1 \times 12+2 \times 0}{1+2}, \frac{1 \times-3+2 \times 0}{1+2}\right)=(4,-1)
$$

Ans.
Now $\mathrm{PQ}=$ Distance between $\mathrm{P}(-2,3)$ and $\mathrm{Q}(4,-1)$

$$
=\sqrt{(4+2)^{2}+(-1-3)^{2}}=\sqrt{36+16}=\sqrt{52}=2 \sqrt{13}
$$

and, $\quad \mathrm{BC}=\sqrt{(12+6)^{2}+(-3-9)^{2}}=\sqrt{324+144}=\sqrt{468}=6 \sqrt{13}$

$$
P Q=2 \sqrt{13} \text { and } B C=6 \sqrt{13} \quad \Rightarrow \quad P Q=\frac{1}{3} B C
$$

Ans.

13.3 Points of Trisection:

Let points P and Q lie on line segment AB and divide it into three equal parts i.e., $\mathbf{A P}=\mathbf{P Q}=\mathbf{Q B}$; then P and Q are called points of trisection of AB .

6 Find the co-ordinates of the points of trisection of the line segment joining the points $A(6,-2)$ and $B(-8,10)$.

Solution :

Let P and Q be the points of trisection so that $A P=P Q=Q B$.

For P :

$$
\begin{array}{ll}
m_{1}: m_{2} & =\mathrm{AP}: \mathrm{PB}=1: 2 ;\left(x_{1}, y_{1}\right)=(6,-2) \text { and }\left(x_{2}, y_{2}\right)=(-8,10) \\
\therefore & x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}=\frac{1 \times-8+2 \times 6}{1+2}=\frac{4}{3} \\
\therefore & y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}=\frac{1 \times 10+2 \times-2}{1+2}=2
\end{array}
$$

$$
\therefore \text { Point } P=\left(\frac{4}{3}, 2\right)
$$

Ans.
For Q :

$$
\begin{aligned}
m_{1}: m_{2} & =\mathrm{AQ}: \mathrm{QB}=2: 1 ;\left(x_{1}, y_{1}\right)=(6,-2) \text { and }\left(x_{2}, y_{2}\right)=(-8,10) \\
\therefore \mathrm{Q} & =\left(\frac{2 \times-8+1 \times 6}{2+1}, \frac{2 \times 10+1 \times-2}{2+1}\right)=\left(-\frac{10}{3}, 6\right)
\end{aligned}
$$

Ans.

7 Show that $P(3, m-5)$ is a point of trisection of the line segment joining the points $A(4,-2)$ and $B(1,4)$. Hence, find the value of ' m '.

Solution :

P will be a point of trisection of AB if it divides AB in the ratio $1: 2$ or $2: 1$.

$$
\left.\begin{array}{rl}
\text { Since, } & x
\end{array}\right)=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, ~ \begin{aligned}
\Rightarrow & =\frac{m_{1} \times 1+m_{2} \times 4}{m_{1}+m_{2}} \\
\Rightarrow 3 m_{1}+3 m_{2} & =m_{1}+4 m_{2} \\
\Rightarrow \quad 2 m_{1} & =m_{2} \text { and } \frac{m_{1}}{m_{2}}=\frac{1}{2} \text { i.e. } m_{1}: m_{2}=1: 2
\end{aligned}
$$

Hence, P is a point of trisection of $A B$.
Now,

$$
y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}
$$

$\Rightarrow \quad m-5=\frac{1 \times 4+2 \times-2}{1+2}$
$\Rightarrow \quad m=5$
Ans.

1. Calculate the co-ordinates of the point P which divides the line segment joining :
(i) $\mathrm{A}(1,3)$ and $\mathrm{B}(5,9)$ in the ratio $1: 2$
(ii) $\mathrm{A}(-4,6)$ and $\mathrm{B}(3,-5)$ in the ratio $3: 2$.
2. In what ratio is the line joining $(2,-3)$ and $(5,6)$ divided by the x-axis?
3. In what ratio is the line joining $(2,-4)$ and $(-3,6)$ divided by the y-axis ?
4. In what ratio does the point $(1, a)$ divide the join of $(-1,4)$ and $(4,-1)$?
Also, find the value of a.
5. In what ratio does the point $(a, 6)$ divide the join of $(-4,3)$ and $(2,8)$?
Also, find the value of a.
6 . In what ratio is the join of $(4,3)$ and $(2,-6)$ divided by the x-axis ? Also, find the co-ordinates of the point of intersection.
6. Find the ratio in which the join of $(-4,7)$ and $(3,0)$ is divided by the y-axis. Also, find the co-ordinates of the point of intersection.
7. Points A, B, C and D divide the line segment joining the point $(5,-10)$ and the origin in five equal parts. Find the co-ordinates of B and D.
8. The line joining the points $\mathrm{A}(-3,-10)$ and B $(-2,6)$ is divided by the point P such that $\frac{\mathrm{PB}}{\mathrm{AB}}=\frac{1}{5}$. Find the co-ordinates of P .
9. P is a point on the line joining $A(4,3)$ and $B(-2,6)$ such that $5 A P=2 B P$. Find the coordinates of P .
10. Calculate the ratio in which the line joining the points $(-3,-1)$ and $(5,7)$ is divided by the line $x=2$. Also, find the co-ordinates of the point of intersection.
11. Calculate the ratio in which the line joining A $(6,5)$ and $\mathrm{B}(4,-3)$ is divided by the line $y=2$.
[2006]
12. The point $P(5,-4)$ divides the line segment $A B$, as shown in the figure, in the ratio $2: 5$. Find the co-ordinates of points A and B.

13. Find the co-ordinates of the points of trisection of the line joining the points $(-3,0)$ and $(6,6)$.
14. Show that the line segment joining the points $(-5,8)$ and $(10,-4)$ is trisected by the co-ordinate axes.
15. Show that $\mathrm{A}(3,-2)$ is a point of trisection of the line-segment joining the points $(2,1)$ and $(5,-8)$.
Also, find the co-ordinates of the other point of trisection.
16. If $A=(-4,3)$ and $B=(8,-6)$
(i) Find the length of $A B$.
(ii) In what ratio is the line joining A and B, divided by the x-axis ?
[2008]
17. The line segment joining the points $M(5,7)$ and $\mathrm{N}(-3,2)$ is intersected by the y-axis at point L. Write down the abscissa of L. Hence, find the ratio in which L divides MN.
Also, find the co-ordinates of L .
18. A $(2,5), B(-1,2)$ and $C(5,8)$ are the co-ordinates of the vertices of the triangle ABC . Points P and Q lie on AB and AC respectively, such that : $\mathrm{AP}: \mathrm{PB}=\mathrm{AQ}: \mathrm{QC}=1: 2$.
(i) Calculate the co-ordinates of P and Q .
(ii) Show that : $\mathrm{PQ}=\frac{1}{3} \mathrm{BC}$.
19. A $(-3,4), \mathrm{B}(3,-1)$ and $\mathrm{C}(-2,4)$ are the vertices of a triangle $A B C$. Find the length of line segment $A P$, where point P lies inside $B C$, such that $\mathrm{BP}: \mathrm{PC}=2: 3$.
20. The line segment joining $\mathrm{A}(2,3)$ and $\mathrm{B}(6,-5)$ is intercepted by x-axis at the point K . Write down the ordinate of the point K . Hence, find the ratio in which K divides $A B$. Also, find the co-ordinates of the point K.
[2006]
21. The line segment joining $A(4,7)$ and $\mathrm{B}(-6,-2)$ is intercepted by the y-axis at the point K . Write down the abscissa of the point K. Hence, find the ratio in which K divides $A B$. Also, find the co-ordinates of the point K .
22. The line joining $P(-4,5)$ and $Q(3,2)$ intersects the y-axis at point R. PM and QN are perpendiculars from P and Q on the x-axis. Find :
(i) the ratio $\mathrm{PR}: \mathrm{RQ}$.
(ii) the co-ordinates of R.
(iii) the area of the quadrilateral PMNQ.
[2004]
23. In the given figure, line APB meets the x-axis at point A and y-axis at point B. P is the point $(-4,2)$ and $\mathrm{AP}: \mathrm{PB}=1: 2$. Find the co-ordinates of A and B. [2013]

24. Given a line segment $A B$ joining the points $\mathrm{A}(-4,6)$ and $\mathrm{B}(8,-3)$. Find :
(i) the ratio in which AB is divided by the y-axis.
(ii) find the co-ordinates of the point of intersection.
(iii) the length of AB .
[2012]

13.4 Mid-Point Formula:

To find the co-ordinates of the mid-point of the line segment joining the two given fixed points.

Let P be the mid-point of the line segment joining the points $\mathrm{A}\left(x_{1}, y_{1}\right)$ and B $\left(x_{2}, y_{2}\right)$.

Required to find the co-ordinates of P . Suppose $\mathrm{P}=(x, y)$.
For mid-point P , the ratio $m_{1}: m_{2}=1: 1$
$\therefore \quad x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}=\frac{1 \cdot x_{2}+1 \cdot x_{1}}{1+1}=\frac{x_{1}+x_{2}}{2}$
and, $y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}=\frac{1 \cdot y_{2}+1 \cdot y_{1}}{1+1}=\frac{y_{1}+y_{2}}{2}$
\therefore Mid-point of the join of $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
8 Find the co-ordinates of the mid-point of the line segment joining the points $P(4,-6)$ and $Q(-2,4)$.
Solution :
Mid-point $=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{4-2}{2}, \frac{-6+4}{2}\right)=(1,-1)$
Ans.

9 The mid-point of line segment $A B$ (shown in the diagram) is $(-3,5)$. Find the co-ordinates of A and B.

Solution :

Since, point A lies on the x-axis; let $\mathrm{A}=(x, 0)$
Since, point B lies on the y-axis; let $\mathrm{B}=(0, y)$
Mid-point of $\mathrm{AB}=\left(\frac{x+0}{2}, \frac{0+y}{2}\right)=(-3,5)$

$\Rightarrow \frac{x}{2}=-3 ; \frac{y}{2}=5$ i.e. $x=-6$ and $y=10$
\therefore Co-ordinates of $A=(-6,0)$ and co-ordinates of $B=(0,10)$
Ans.
$10 \mathrm{~A}(14,-2), B(6,-2)$ and $D(8,2)$ are the three vertices of a parallelogram $A B C D$. Find the co-ordinates of the fourth vertex C.

Solution :

Let $\mathrm{C}=(x, y)$
Since the diagonals of a parallelogram bisect each other;
\therefore Mid-point of $\mathrm{AC}=$ mid-point of BD
$\Rightarrow\left(\frac{14+x}{2}, \frac{-2+y}{2}\right)=\left(\frac{8+6}{2}, \frac{2+-2}{2}\right)^{A}$

$\Rightarrow \frac{14+x}{2}=\frac{14}{2}$ and $\frac{-2+y}{2}=\frac{0}{2} \Rightarrow x=0$ and $y=2$
\therefore The vertex $C=(0,2)$
Ans.
11 In triangle $A B C, P(-2,5)$ is mid-point of $A B, Q(2,4)$ is mid-point of $B C$ and $R(-1,2)$ is mid-point of $A C$. Calculate the co-ordinates of vertices A, B and C.

Solution :

Let $\mathrm{A}=\left(x_{1}, y_{1}\right), \mathrm{B}=\left(x_{2}, y_{2}\right)$ and $\mathrm{C}=\left(x_{3}, y_{3}\right)$.
Since, P is mid-point of $A B$
$\Rightarrow \frac{x_{1}+x_{2}}{2}=-2$ and $\frac{y_{1}+y_{2}}{2}=5$

i.e. $\quad x_{1}+x_{2}=-4$
and, $\quad y_{1}+y_{2}=10$
Since, Q is mid-point of BC

$$
\begin{array}{ll}
\Rightarrow & \frac{x_{2}+x_{3}}{2}=2 \text { and } \frac{y_{2}+y_{3}}{2}=4 \\
\text { i.e. } & x_{2}+x_{3}=4 \\
\text { and, } & y_{2}+y_{3}=8
\end{array}
$$

.....III

Since, R is mid-point of AC
$\Rightarrow \quad \frac{x_{1}+x_{3}}{2}=-1$ and $\frac{y_{1}+y_{3}}{2}=2$
i.e. $\quad x_{1}+x_{3}=-2$
and, $\quad y_{1}+y_{3}=4$
Adding equations I, III and V ; we get :

$$
\begin{aligned}
& \\
x_{1}+x_{2}+x_{2}+x_{3}+x_{1}+x_{3} & =-4+4-2 \\
\Rightarrow & 2\left(x_{1}+x_{2}+x_{3}\right)
\end{aligned}=-2
$$

i.e.

$$
x_{1}+x_{2}+x_{3}=-1
$$

On subtracting eq. I from eq. VII, we get : $x_{3}=-1+4=3$
On subtracting eq. III from eq. VII, we get : $x_{1}=-1-4=-5$
And, on subtracting eq. V from eq. VII, we get : $x_{2}=-1+2=1$
In the same way, on solving equations II, IV and VI, we get :

$$
y_{1}=3, y_{2}=7 \text { and } y_{3}=1
$$

$\therefore \mathbf{A}=\left(x_{1}, y_{1}\right)=(-5,3), \mathbf{B}=\left(x_{2}, y_{2}\right)=(1,7)$ and $\mathbf{C}=\left(x_{3}, y_{3}\right)=(3, \mathbf{1})$
Ans.
12 The mid-point of the line segment joining $(3 m, 6)$ and $(-4,3 n)$ is $(1,2 m-1)$. Find the values of m and n.
[2006]

Solution :

According to the adjoining figure, we have :

$$
\begin{aligned}
& \frac{3 m+(-4)}{2}=1 \quad \text { and } \quad \frac{6+3 n}{2}=2 m-1 \\
& \Rightarrow \quad 3 m-4=2 \text { and } \quad 6+3 n=4 m-2 \\
& \Rightarrow \quad m=2 \text { and } \quad 3 n=4 m-8 \\
& \Rightarrow \quad 3 n=4 \times 2-8 \\
& \Rightarrow \quad m=2 \text { and } \quad n=0
\end{aligned}
$$

Ans.
13.5 Centroid of a triangle :

The centroid of a triangle is the point of intersection of its medians and it (centroid) divides each median in the ratio $2: 1$.

13 Find the co-ordinates of the point of intersection of the medians of triangle $A B C$; given $A=(-2,3), B=(6,7)$ and $C=(4,1)$.

Solution :

Let D be the mid-point of BC .

$\therefore \mathrm{D}=\left(\frac{6+4}{2}, \frac{7+1}{2}\right)=(5,4)$
If G is the point of intersection of medians (centroid), it divides the median AD in the ratio $2: 1$.

$$
\begin{aligned}
\therefore G & =\left[\frac{2 \times 5+1 \times-2}{2+1}, \frac{2 \times 4+1 \times 3}{2+1}\right] \\
& =\left(\frac{8}{3}, \frac{11}{3}\right)
\end{aligned}
$$

Ans.

Direct method : For the vertices A $\left(x_{1}, y_{1}\right), \mathrm{B}\left(x_{2}, y_{2}\right)$ and $\mathrm{C}\left(x_{3}, y_{3}\right)$ of triangle
ABC, its centroid $=\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$

Thus, in the case of example given above;

$$
\begin{aligned}
\text { Centroid } & =\left(\frac{-2+6+4}{3}, \frac{3+7+1}{3}\right) \\
& =\left(\frac{8}{3}, \frac{11}{3}\right)
\end{aligned}
$$

Ans.

Taking :

$$
\begin{aligned}
(-2,3) & =\left(x_{1}, y_{1}\right) \\
(6,7) & =\left(x_{2}, y_{2}\right)
\end{aligned}
$$

and $(4,1)=\left(x_{3}, y_{3}\right)$
$14 A B C$ is a triangle and $G(4,3)$ is the centroid of the triangle. If $A=(1,3)$, $B=(4, b)$ and $C=(a, 1)$, find ' a ' and ' b '. Find the length of side $B C$. [2011]

Solution :

Since, G is centroid of $\triangle A B C$.

$$
\begin{aligned}
& \left(\frac{1+4+a}{3}, \frac{3+b+1}{3}\right)=(4,3) \\
& \Rightarrow \quad \frac{5+a}{3}=4 \quad \text { and } \frac{4+b}{3}=3
\end{aligned}
$$

$\Rightarrow \quad a=7 \quad$ and $\quad b=5$
Clearly, $\mathrm{B}=(4, b)=(4,5)$ and $\mathrm{C}=(a, 1)=(7,1)$
$\therefore \quad B C=\sqrt{(7-4)^{2}+(1-5)^{2}}=\sqrt{9+16}=\sqrt{25}=5$ units
Ans.

EXERCISE 13(B)

Ans.

EXERCISE 13(B)

6. In the given figure, P $(4,2)$ is mid-point of line segment $A B$. Find the co-ordinates of A and B.

7. $(-5,2),(3,-6)$ and $(7,4)$ are the vertices of a triangle. Find the length of its median through the vertex $(3,-6)$.
8. Given a line ABCD in which $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}$, $\mathrm{B}=(0,3)$ and $\mathrm{C}=(1,8)$.
Find the coordinates of A and D.
9. One end of the diameter of a circle is $(-2,5)$. Find the co-ordinates of the other end of it, if the centre of the circle is $(2,-1)$.
10. A $(2,5), \mathrm{B}(1,0), \mathrm{C}(-4,3)$ and $\mathrm{D}(-3,8)$ are the vertices of quadrilateral $A B C D$. Find the co-ordinates of the mid-points of AC and BD . Give a special name to the quadrilateral.
11. $\mathrm{P}(4,2)$ and $\mathrm{Q}(-1,5)$ are the vertices of parallelogram PQRS and $(-3,2)$ are the co-ordinates of the point of intersection of its diagonals. Find co-ordinates of R and S.
12. A $(-1,0), \mathrm{B}(1,3)$ and $\mathrm{D}(3,5)$ are the vertices of a parallelogram $A B C D$. Find the co-ordinates of vertex \mathbf{C}.
13. The points $(2,-1),(-1,4)$ and $(-2,2)$ are mid-points of the sides of a triangle. Find its vertices.
14. Points A $(-5, x)$, B $(y, 7)$ and $\mathrm{C}(1,-3)$ are collinear (i.e. lie on the same straight line) such that $\mathrm{AB}=\mathrm{BC}$. Calculate the values of x and y.
15. Points $\mathrm{P}(a,-4), \mathrm{Q}(-2, b)$ and $\mathrm{R}(0,2)$ are
collinear. If Q lies between P and R , such that $\mathrm{PR}=2 \mathrm{QR}$, calculate the values of a and b.
16. Calculate the co-ordinates of the centroid of the triangle ABC , if $\mathrm{A}=(7,-2), \mathrm{B}=(0,1)$ and $C=(-1,4)$.
17. The co-ordinates of the centroid of a triangle PQR are $(2,-5)$. If $\mathrm{Q}=(-6,5)$ and $\mathrm{R}=(11,8)$; calculate the co-ordinates of vertex P.
18. A $(5, x), \mathrm{B}(-4,3)$ and $\mathrm{C}(y,-2)$ are the vertices of the triangle $A B C$ whose centroid is the origin. Calculate the values of x and y.

EXERCISE 13(C)

1. Given a triangle ABC in which $\mathrm{A}=(4,-4)$, $B=(0,5)$ and $C=(5,10)$. A point P lies on $B C$ such that $B P: P C=3: 2$. Find the length of line segment AP.
2. $A(20,0)$ and $B(10,-20)$ are two fixed points. Find the co-ordinates of the point P in AB such that : $3 \mathrm{~PB}=\mathrm{AB}$. Also, find the co-ordinates of some other point Q in AB such that : $\mathrm{AB}=6 \mathrm{AQ}$.
3. $\mathrm{A}(-8,0), \mathrm{B}(0,16)$ and $\mathrm{C}(0,0)$ are the vertices of a triangle $A B C$. Point P lies on $A B$ and Q lies on AC such that $\mathrm{AP}: \mathrm{PB}=3: 5$ and $\mathrm{AQ}: \mathrm{QC}=3: 5$.
Show that: $\mathrm{PQ}=\frac{3}{8} \mathrm{BC}$.
4. Find the co-ordinates of points of trisection of the line segment joining the point $(6,-9)$ and the origin.
5. A line segment joining $\mathrm{A}\left(-1, \frac{5}{3}\right)$ and $\mathrm{B}(a, 5)$ is divided in the ratio $1: 3$ at P , the point where the line segment $A B$ intersects the y-axis.
(i) Calculate the value of ' a '.
(ii) Calculate the co-ordinates of ' P '.
6. In what ratio is the line joining $\mathrm{A}(0,3)$ and B $(4,-1)$ divided by the x-axis ?
Write the co-ordinates of the point where AB intersects the x-axis.
7. The mid-point of the segment AB , as shown in diagram, is $\mathrm{C}(4,-3)$. Write down the coordinates of A and B.

8. AB is a diameter of a circle with centre $C=(-2,5)$. If $A=(3,-7)$, find
(i) the length of radius AC .
(ii) the coordinates of B .
[2013]
9. Find the co-ordinates of the centroid of a triangle ABC whose vertices are :
$\mathrm{A}(-1,3), \mathrm{B}(1,-1)$ and $\mathrm{C}(5,1)$.
[2006]
10. The mid-point of the line segment joining $(4 a, 2 b-3)$ and $(-4,3 b)$ is $(2,-2 a)$. Find the values of a and b.
11. The mid-point of the line segment joining $(2 a, 4)$ and $(-2,2 b)$ is $(1,2 a+1)$. Find the values of a and b.
[2007]
12. (i) Write down the co-ordinates of the point P that divides the line joining $\mathrm{A}(-4,1)$ and $\mathrm{B}(17,10)$ in the ratio $1: 2$.
(ii) Calculate the distance OP , where O is the origin.
(iii) In what ratio does the y-axis divide the line AB ?
13. Prove that the points $\mathrm{A}(-5,4) ; \mathrm{B}(-1,-2)$ and $C(5,2)$ are the vertices of an isosceles rightangled triangle. Find the co-ordinates of D so that ABCD is a square.
14. M is the mid-point of the line segment joining the points $\mathrm{A}(-3,7)$ and $\mathrm{B}(9,-1)$. Find the co-ordinates of point M. Further, if R(2, 2) divides the line segment joining M and the origin in the ratio $p: q$, find the ratio $p: q$.
15. Calculate the ratio in which the line joining $A(-4,2)$ and $B(3,6)$ is divided by point $\mathrm{P}(x, 3)$. Also, find (i) x (ii) length of AP.
[2014]
16. Find the ratio in which the line $2 x+y=4$ divides the line segment joining the points $P(2,-2)$ and $Q(3.7)$.
17. If the abscissa of a point P is 2 . Find the ratio in which this point divides the line segment joining the points $(-4,3)$ and $(6,3)$. Also, find the co-ordinates of point P.
18. The line joining the points $(2,1)$ and $(5,-8)$ is trisected at the points P and Q . If point P lies on the line $2 x-y+k=0$, find the value of k. Also, find the co-ordinates of point \mathbf{Q}.
19. M is the mid-point of the line segment joining the points $\mathrm{A}(0,4)$ and $\mathrm{B}(6,0)$. M also divides the line segment OP in the ratio $1: 3$. Find :
(i) co-ordinates of M
(ii) co-ordinates of \mathbf{P}
(iii) length of BP

20. Find the image of the point $\mathrm{A}(5,-3)$ under reflection in the point $\mathrm{P}(-1,3)$.
21. $\mathrm{A}(-4,2), \mathrm{B}(0,2)$ and $\mathrm{C}(-2,-4)$ are vertices of a triangle $A B C . P, Q$ and R are mid-points of sides $B C, C A$ and $A B$ respectively. Show that the centroid of $\triangle \mathrm{PQR}$ is the same as the centroid of $\triangle \mathrm{ABC}$.
