

Trigonometrical Identities

(Including Trigonometrical Ratios of Complementary Angles and Use of Four Figure Trigonometrical Tables)

21.1 Trigonometry :

Trigonometry means; the science which deals with the measurements of triangles.

21.2 Trigonometrical Ratios:

There are six trigonometrical ratios relating to the three sides of a right-angled triangle (this has already been done by students in Class IX).

For an acute angle of a right-angled triangle :

$$
\begin{align*}
& \text { (1) } \begin{aligned}
\text { sine }(\sin) & =\frac{\text { Perpendicular }}{\text { Hypotenuse }} \Rightarrow \sin A=\frac{B C}{A C} \\
\text { (2) } \quad \text { cosine }(\cos) & =\frac{\text { Base }}{\text { Hypotenuse }} \Rightarrow \cos A=\frac{A B}{A C} \\
\text { (3) } \quad \text { tangent }(\tan) & =\frac{\text { Perpendicular }}{\text { Base }} \Rightarrow \tan A=\frac{B C}{A B}
\end{aligned} \text { (3)} \tag{1}
\end{align*}
$$

(4) cotangent (cot) $=\frac{\text { Base }}{\text { Perpendicular }} \Rightarrow \quad \cot A=\frac{A B}{B C}$

$$
\begin{equation*}
\text { secant }(\sec)=\frac{\text { Hypotenuse }}{\text { Base }} \Rightarrow \sec A=\frac{A C}{A B} \tag{5}
\end{equation*}
$$

(6) cosecant $(\operatorname{cosec})=\frac{\text { Hypotenuse }}{\text { Perpendicular }} \Rightarrow \operatorname{cosec} A=\frac{A C}{B C}$

Remember :

1. Each trigonometrical ratio is a real number and has no unit.
2. The values of trigonometrical ratios are always the same for the same angle. For Example :

$$
\begin{aligned}
\text { In right triangle } \mathrm{ABC}, \sin \mathrm{~A} & =\frac{\mathrm{BC}}{\mathrm{AC}} \\
\text { and in right triangle } \mathrm{AMN}, \sin \mathrm{~A} & =\frac{\mathrm{MN}}{\mathrm{AN}}
\end{aligned}
$$

Since the angle A is same for both the triangles; we have $\sin A=\frac{B C}{A C}=\frac{M N}{A N}$
For the same reason $: \cos A=\frac{A B}{A C}=\frac{A M}{A N}, \tan A=\frac{B C}{A B}=\frac{M N}{A M}$ and so on.

21.3 Relations Between Different Trigonometrical Ratios:

1. Reciprocal relations :

Since $\sin \mathrm{A}=\frac{\text { perpendicular }}{\text { hypotenuse }}$ and $\operatorname{cosec} \mathrm{A}=\frac{\text { hypotenuse }}{\text { perpendicular }}$
$\Rightarrow \quad \sin \mathrm{A}$ and $\operatorname{cosec} \mathrm{A}$ are reciprocals of each other
i.e. $\sin A=\frac{1}{\operatorname{cosec} A} \quad$ and $\quad \operatorname{cosec} A=\frac{1}{\sin A}$

Similarly, (i) $\cos \mathrm{A}$ and $\sec \mathrm{A}$ are reciprocals of each other

$$
\text { i.e. } \cos A=\frac{1}{\sec A} \quad \text { and } \quad \sec A=\frac{1}{\cos A}
$$

(ii) $\tan A$ and $\cot A$ are reciprocals of each other

$$
\text { i.e. } \tan A=\frac{1}{\cot A} \quad \text { and } \quad \cot A=\frac{1}{\tan A} .
$$

2. Quotient relations :

$$
\begin{array}{rlrl}
\text { Since } & \sin A & =\frac{\text { perpendicular }}{\text { hypotenuse }} \text { and } \cos A=\frac{\text { base }}{\text { hypotenuse }} \\
\therefore \quad & \frac{\sin A}{\cos A} & =\frac{\text { perpendicular }}{\text { hypotenuse }} \times \frac{\text { hypotenuse }}{\text { base }} \\
& =\frac{\text { perpendicular }}{\text { base }}=\tan A
\end{array}
$$

Similarly, $\frac{\cos A}{\sin A}=\cot A$
Hence, $\quad \tan A=\frac{\sin A}{\cos A}$ and $\cot A=\frac{\cos A}{\sin A}$
3. Square relations :

In right-angled triangle ABC , with angle $\mathrm{B}=90^{\circ}$;
$\sin \mathrm{A}=\frac{\mathrm{BC}}{\mathrm{AC}}$ and $\cos \mathrm{A}=\frac{\mathrm{AB}}{\mathrm{AC}}$

$$
\begin{aligned}
\Rightarrow \quad \sin ^{2} A+\cos ^{2} A & =\left(\frac{B C}{A C}\right)^{2}+\left(\frac{A B}{A C}\right)^{2} \\
& =\frac{B C^{2}+A B^{2}}{A C^{2}} \\
& =\frac{A C^{2}}{A C^{2}}=1
\end{aligned}
$$

$\sin ^{2} A+\cos ^{2} A=1$

Similarly,
(i) $1+\tan ^{2} \mathrm{~A}=1+\left(\frac{\mathrm{BC}}{\mathrm{AB}}\right)^{2}$

$$
\begin{aligned}
=\frac{\mathrm{AB}^{2}+\mathrm{BC}^{2}}{\mathrm{AB}^{2}} & \doteq \frac{\mathrm{AC}^{2}}{\mathrm{AB}^{2}} \quad\left[\because \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}\right] \\
& =\left(\frac{\mathrm{AC}}{\mathrm{AB}}\right)^{2}=\sec ^{2} \mathrm{~A} \quad
\end{aligned} \quad\left[\because \sec \mathrm{~A}=\frac{\mathrm{AC}}{\mathrm{AB}}\right]
$$

(ii) $1+\cot ^{2} \mathrm{~A}=1+\left(\frac{\mathrm{AB}}{\mathrm{BC}}\right)^{2}$

$$
\begin{aligned}
=\frac{B C^{2}+A B^{2}}{B C^{2}} & =\frac{A C^{2}}{B C^{2}} \\
& =\left(\frac{A C}{B C}\right)^{2}=\operatorname{cosec}^{2} A \quad\left[\because \operatorname{cosec} A=\frac{A C}{B C}\right]
\end{aligned}
$$

Hence,

$$
\sin ^{2} A+\cos ^{2} A=1 ; \quad 1+\tan ^{2} A=\sec ^{2} A \quad \text { and } \quad 1+\cot ^{2} A=\operatorname{cosec}^{2} A
$$

Remember :

(i) $\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}=1 \quad \Rightarrow \quad \sin ^{2} \mathrm{~A}=1-\cos ^{2} \mathrm{~A} \quad$ and $\quad \cos ^{2} \mathrm{~A}=1-\sin ^{2} \mathrm{~A}$
(ii) $1+\tan ^{2} \mathrm{~A}=\sec ^{2} \mathrm{~A} \Rightarrow \sec ^{2} \mathrm{~A}-\tan ^{2} \mathrm{~A}=1 \quad$ and $\quad \sec ^{2} \mathrm{~A}-1=\tan ^{2} \mathrm{~A}$
(iii) $1+\cot ^{2} \mathrm{~A}=\operatorname{cosec}^{2} \mathrm{~A} \Rightarrow \operatorname{cosec}^{2} \mathrm{~A}-\cot ^{2} \mathrm{~A}=1 \quad$ and $\quad \operatorname{cosec}^{2} \mathrm{~A}-1=\cot ^{2} \mathrm{~A}$

21.4 Trigonometric Identities:

When an equation, involving trigonometrical ratios of an angle A, is true for all values of A ; the equation is called a trigonometrical identity.

Each of the relations given above; viz. reciprocal relations, quotient relations and square relations; is a trigonometrical identity.
(1) Prove the identity : $\tan A+\cot A=\sec A \cdot \operatorname{cosec} A$

Solution :

L.H.S. $=\tan \mathrm{A}+\cot \mathrm{A}$

$$
\begin{aligned}
& =\frac{\sin A}{\cos A}+\frac{\cos A}{\sin A}=\frac{\sin ^{2} A+\cos ^{2} A}{\cos A \cdot \sin A} \\
& =\frac{1}{\cos A \sin A} \\
& =\sec A \cdot \operatorname{cosec} A=\text { R.H.S. } \quad\left[\because \sec A=\frac{1}{\cos A} \text { and } \operatorname{cosec} A=\frac{1}{\sin A}\right]
\end{aligned}
$$

Important :

In order to prove a trigonometrical identity : start with any side left-hand-side (L.H.S.) or right-hand-side (R.H.S.) and by applying trigonometrical relations reach to the other side, i.e., if you start with L.H.S.; reach to R.H.S. and if you start with R.H.S. reach to L.H.S.

In general, start with the more complicated side.
Sometimes both the sides are complicated. In this situation, both the sides may be taken and reduced independently to the same result.

2 Prove that: (i) $\cos ^{4} A-\sin ^{4} A=2 \cos ^{2} A-1$
(ii) $(1+\cot A)^{2}+(1-\cot A)^{2}=2 \operatorname{cosec}^{2} A$
(iii) $\tan ^{4} A+\tan ^{2} A=\sec ^{4} A-\sec ^{2} A$

Solution :

(i) L.H.S. $=\left(\cos ^{2} \mathrm{~A}\right)^{2}-\left(\sin ^{2} \mathrm{~A}\right)^{2}$

$$
\begin{aligned}
& =\left(\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}\right)\left(\cos ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~A}\right) \\
& =\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A} \\
& =\cos ^{2} \mathrm{~A}-\left(1-\cos ^{2} \mathrm{~A}\right) \\
& =2 \cos ^{2} \mathrm{~A}-1=\text { R.H.S. }
\end{aligned}
$$

[As, $\sin ^{2} \mathrm{~A}=1-\cos ^{2} \mathrm{~A}$]
(ii) L.H.S. $=1+\cot ^{2} \mathrm{~A}+2 \cot \mathrm{~A}+1+\cot ^{2} \mathrm{~A}-2 \cot \mathrm{~A}$

$$
\begin{aligned}
& =2+2 \cot ^{2} \mathrm{~A} \\
& =2\left(1+\cot ^{2} \mathrm{~A}\right) \\
& =2 \operatorname{cosec}^{2} \mathrm{~A} \\
& =\text { R.H.S. }
\end{aligned}
$$

(iii) L.H.S. $=\tan ^{2} \mathrm{~A} \cdot\left(\tan ^{2} \mathrm{~A}+1\right)$

$$
\begin{aligned}
& =\left(\sec ^{2} A-1\right) \cdot \sec ^{2} A \\
& =\sec ^{4} A-\sec ^{2} A=\text { R.H.S. }
\end{aligned} \quad\left[\text { As, } \sec ^{2} A=1+\tan ^{2} A\right]
$$

(3) Prove that:
(i) $\frac{\sin A}{1+\cos A}+\frac{1+\cos A}{\sin A}=2 \operatorname{cosec} A$
[2004, 2009]
(ii) $\frac{1+\cos A}{1-\cos A}=(\operatorname{cosec} A+\cot A)^{2}$
(iii) $\frac{\cot A+\tan B}{\cot B+\tan A}=\cot A \tan B$.
(iv) $\frac{\cos A \cot A}{1-\sin A}=1+\operatorname{cosec} A$
[2006 type]

Solution :

(i) L.H.S. $=\frac{\sin ^{2} A+(1+\cos A)^{2}}{(1+\cos A) \sin A}$

$$
=\frac{\sin ^{2} A+1+\cos ^{2} A+2 \cos A}{(1+\cos A) \sin A}
$$

$$
=\frac{1+1+2 \cos A}{(1+\cos A) \sin A}
$$

$$
\left[\because \sin ^{2} A+\cos ^{2} A=1\right]
$$

$$
=\frac{2(1+\cos A)}{(1+\cos A) \sin A}=\frac{2}{\sin A}=2 \operatorname{cosec} A=\text { R.H.S. }
$$

(ii) R.H.S. $=\left(\frac{1}{\sin A}+\frac{\cos A}{\sin A}\right)^{2}$

$$
\begin{aligned}
& =\frac{(1+\cos A)^{2}}{\sin ^{2} A}=\frac{(1+\cos A)^{2}}{1-\cos ^{2} A} \\
& =\frac{(1+\cos A)(1+\cos A)}{(1+\cos A)(1-\cos A)}=\frac{1+\cos A}{1-\cos A}=\text { L.H.S. }
\end{aligned}
$$

Alternative method :

$$
\begin{aligned}
\text { L.H.S. } & =\frac{1+\cos \mathrm{A}}{1-\cos \mathrm{A}} \times \frac{1+\cos \mathrm{A}}{1+\cos \mathrm{A}} \quad \text { [Multiplying and dividing by }(1+\cos \mathrm{A}) \text {] } \\
& =\frac{(1+\cos \mathrm{A})^{2}}{1-\cos ^{2} \mathrm{~A}} \\
& =\frac{(1+\cos \mathrm{A})^{2}}{\sin ^{2} \mathrm{~A}}=\left(\frac{1+\cos \mathrm{A}}{\sin \mathrm{~A}}\right)^{2}=\left(\frac{1}{\sin \mathrm{~A}}+\frac{\cos \mathrm{A}}{\sin \mathrm{~A}}\right)^{2} \\
& =(\operatorname{cosec} \mathrm{A}+\cot \mathrm{A})^{2}=\text { R.H.S. }
\end{aligned}
$$

(iii) L.H.S. $=\frac{\frac{\cos A}{\sin A}+\frac{\sin B}{\cos B}}{\frac{\cos B}{\sin B}+\frac{\sin A}{\cos A}}=\frac{\frac{\cos A \cos B+\sin A \sin B}{\sin A \cos B}}{\frac{\cos A \cos B+\sin A \sin B}{\sin B \cdot \cos A}}=\frac{\sin B \cos A}{\sin A \cos B}$ $=\left(\frac{\cos A}{\sin A}\right) \cdot\left(\frac{\sin B}{\cos B}\right)=\cot A \cdot \tan B=$ R.H.S.

Alternative method :

$$
\begin{aligned}
\text { L.H.S. } & =\frac{\cot A+\tan B}{\frac{1}{\tan B}+\frac{1}{\cot A}} \\
& =\frac{\cot A+\tan B}{\frac{\cot A+\tan B}{\tan B \cot A}}=\frac{(\cot A+\tan B) \cot A \tan B}{\cot A+\tan B}=\cot A \tan B=\text { R.H.S. }
\end{aligned}
$$

$$
\text { (iv) L.H.S. }=\frac{\cos A \cot A}{1-\sin A}=\frac{\cos A \times \frac{\cos A}{\sin A}}{1-\sin A}=\frac{\cos ^{2} A}{\sin A(1-\sin A)}
$$

$$
=\frac{(1-\sin A)(1+\sin A)}{\sin A(1-\sin A)} \quad\left[\because \cos ^{2} A=1-\sin ^{2} A=(1-\sin A)(1+\sin A)\right]
$$

$$
=\frac{1+\sin A}{\sin A}=\frac{1}{\sin A}+\frac{\sin A}{\sin A}=\operatorname{cosec} A+1=\text { R.H.S. }
$$

4 Prove that: $\frac{\sec A-\tan A}{\operatorname{cosec} A+\cot A}=\frac{\operatorname{cosec} A-\cot A}{\sec A+\tan A}$

Solution :

Since $\sec ^{2} \mathrm{~A}-\tan ^{2} \mathrm{~A}=1$ and $\operatorname{cosec}^{2} \mathrm{~A}-\cot ^{2} \mathrm{~A}=1$.
$\therefore \quad \sec ^{2} \mathrm{~A}-\tan ^{2} \mathrm{~A}=\operatorname{cosec}^{2} \mathrm{~A}-\cot ^{2} \mathrm{~A}$
$\Rightarrow \quad(\sec A-\tan A)(\sec A+\tan A)=(\operatorname{cosec} A-\cot A)(\operatorname{cosec} A+\cot A)$
$\Rightarrow \quad \frac{\sec \mathrm{A}-\tan \mathrm{A}}{\operatorname{cosec} \mathrm{A}+\cot \mathrm{A}}=\frac{\operatorname{cosec} \mathrm{A}-\cot \mathrm{A}}{\sec \mathrm{A}+\tan \mathrm{A}}$
Hence Proved.
Alternative method :

$$
\begin{aligned}
\text { L.H.S. } & =\frac{\sec A-\tan A}{\operatorname{cosec} A+\cot A} \\
& =\frac{\sec A-\tan A}{\operatorname{cosec} A+\cot A} \times \frac{\operatorname{cosec} A-\cot A}{\operatorname{cosec} A-\cot A} \times \frac{\sec A+\tan A}{\sec A+\tan A} \\
& =\frac{\left(\sec ^{2} A-\tan ^{2} A\right)(\operatorname{cosec} A-\cot A)}{\left(\operatorname{cosec}^{2} A-\cot ^{2} A\right)(\sec A+\tan A)} \\
& =\frac{1 \times(\operatorname{cosec} A-\cot A)_{1 \times(\sec A+\tan A)}^{\operatorname{cosec} A-\cot A}}{\sec A+\tan A}=\text { R.H.S }
\end{aligned}
$$

(5) Prove that : (i) $\sqrt{\frac{1-\sin A}{1+\sin A}}=\sec A-\tan A$

$$
\text { (ii) } \frac{\tan A+\sec A-1}{\tan A-\sec A+1}=\frac{1+\sin A}{\cos A}
$$

Solution :

(i) L.H.S. $=\sqrt{\frac{1-\sin A}{1+\sin A}} \times \frac{\sqrt{1-\sin A}}{\sqrt{1-\sin A}}$ [Multiplying and dividing by $\sqrt{1-\sin A}$]

$$
\begin{aligned}
& =\frac{1-\sin A}{\sqrt{1-\sin ^{2} A}}=\frac{1-\sin A}{\cos A} \quad\left[\because 1-\sin ^{2} A=\cos ^{2} A\right] \\
& =\frac{1}{\cos A}-\frac{\sin A}{\cos A}=\sec A-\tan A=\text { R.H.S. }
\end{aligned}
$$

(ii) L.H.S. $=\frac{\tan \mathrm{A}+\sec \mathrm{A}-\left(\sec ^{2} \mathrm{~A}-\tan ^{2} \mathrm{~A}\right)}{\tan \mathrm{A}-\sec \mathrm{A}+1}$
$\left[\because \sec ^{2} \mathrm{~A}-\tan ^{2} \mathrm{~A}=1\right]$

$$
\begin{aligned}
& =\frac{(\tan A+\sec A)-(\sec A+\tan A)(\sec A-\tan A)}{\tan A-\sec A+1} \\
& =\frac{(\tan A+\sec A)(1-\sec A+\tan A)}{\tan A-\sec A+1} \\
& =\tan A+\sec A=\frac{\sin A}{\cos A}+\frac{1}{\cos A}=\frac{\sin A+1}{\cos A}=\text { R.H.S. }
\end{aligned}
$$

Alternative method :
L.H.S. $=\frac{\frac{\sin A}{\cos A}+\frac{1}{\cos A}-1}{\frac{\sin A}{\cos A}-\frac{1}{\cos A}+1}=\frac{\frac{\sin A+1-\cos A}{\cos A}}{\frac{\sin A-1+\cos A}{\cos A}}$

$$
\begin{aligned}
& =\frac{\sin A+1-\cos A}{\sin A-1+\cos A} \\
& =\frac{\sin A+1-\cos A}{\sin A-1+\cos A} \times \frac{1+\sin A}{1+\sin A} \quad[\text { Multiplying and dividing by } 1+\sin A] \\
& =\frac{(\sin A+1-\cos A)(1+\sin A)}{\sin A-1+\cos A+\sin ^{2} A-\sin A+\sin A \cos A} \\
& =\frac{(\sin A+1-\cos A)(1+\sin A)}{-1+\cos A+\left(1-\cos ^{2} A\right)+\sin A \cos A} \quad\left[\because \sin ^{2} A=1-\cos ^{2} A\right] \\
& =\frac{(\sin A+1-\cos A)(1+\sin A)}{\cos A-\cos ^{2} A+\sin A \cos A} \\
& =\frac{(\sin A+1-\cos A)(1+\sin A)}{\cos A(1-\cos A+\sin A)}=\frac{1+\sin A}{\cos A}=\text { R.H.S. }
\end{aligned}
$$

EXERCISE 21(A)

Prove the following identities :

1. $\frac{\sec \mathrm{A}-1}{\sec \mathrm{~A}+1}=\frac{1-\cos \mathrm{A}}{1+\cos \mathrm{A}}$
[2007]
2. $\frac{1+\sin \mathrm{A}}{1-\sin \mathrm{A}}=\frac{\operatorname{cosec} \mathrm{A}+1}{\operatorname{cosec} \mathrm{~A}-1}$
3. $\frac{1}{\tan A+\cot A}=\cos A \sin A$
4. $\tan \mathrm{A}-\cot \mathrm{A}=\frac{1-2 \cos ^{2} \mathrm{~A}}{\sin \mathrm{~A} \cos \mathrm{~A}}$
5. $\sin ^{4} \mathrm{~A}-\cos ^{4} \mathrm{~A}=2 \sin ^{2} \mathrm{~A}-1$
6. $(1-\tan A)^{2}+(1+\tan A)^{2}=2 \sec ^{2} A$ [2005]
7. $\operatorname{cosec}^{4} \mathrm{~A}-\operatorname{cosec}^{2} \mathrm{~A}=\cot ^{4} \mathrm{~A}+\cot ^{2} \mathrm{~A}$
8. $\sec A(1-\sin A)(\sec A+\tan A)=1$
9. $\operatorname{cosec} A(1+\cos A)(\operatorname{cosec} A-\cot A)=1$
10. $\sec ^{2} A+\operatorname{cosec}^{2} A=\sec ^{2} A \cdot \operatorname{cosec}^{2} A$
11. $\frac{\left(1+\tan ^{2} \mathrm{~A}\right) \cot \mathrm{A}}{\operatorname{cosec}^{2} \mathrm{~A}}=\tan \mathrm{A}$
12. $\tan ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}=\tan ^{2} \mathrm{~A} \cdot \sin ^{2} \mathrm{~A}$
13. $\cot ^{2} \mathrm{~A}-\cos ^{2} \mathrm{~A}=\cos ^{2} \mathrm{~A} \cdot \cot ^{2} \mathrm{~A}$
14. $(\operatorname{cosec} A+\sin A)(\operatorname{cosec} A-\sin A)$

$$
=\cot ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}
$$

15. $(\sec \mathrm{A}-\cos \mathrm{A})(\sec \mathrm{A}+\cos \mathrm{A})$

$$
=\sin ^{2} \mathrm{~A}+\tan ^{2} \mathrm{~A}
$$

16. $(\cos A+\sin A)^{2}+(\cos A-\sin A)^{2}=2$
17. $(\operatorname{cosec} \mathrm{A}-\sin \mathrm{A})(\sec \mathrm{A}-\cos \mathrm{A})(\tan \mathrm{A}+\cot \mathrm{A})$ $=1$
18. $\frac{1}{\sec A+\tan A}=\sec A-\tan A$
19. $\operatorname{cosec} A+\cot A=\frac{1}{\operatorname{cosec} A-\cot A}$
20. $\frac{\sec \mathrm{A}-\tan \mathrm{A}}{\sec \mathrm{A}+\tan \mathrm{A}}=1-2 \sec \mathrm{~A} \tan \mathrm{~A}+2 \tan ^{2} \mathrm{~A}$
21. $(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}$

$$
=7+\tan ^{2} \mathrm{~A}+\cot ^{2} \mathrm{~A}
$$

22. $\sec ^{2} \mathrm{~A} \cdot \operatorname{cosec}^{2} \mathrm{~A}=\tan ^{2} \mathrm{~A}+\cot ^{2} \mathrm{~A}+2$
23. $\frac{1}{1+\cos A}+\frac{1}{1-\cos A}=2 \operatorname{cosec}^{2} A$
24. $\frac{1}{1-\sin \mathrm{A}}+\frac{1}{1+\sin \mathrm{A}}=2 \sec ^{2} \mathrm{~A}$
25. $\frac{\operatorname{cosec} \mathrm{A}}{\operatorname{cosec} \mathrm{A}-1}+\frac{\operatorname{cosec} \mathrm{A}}{\operatorname{cosec} \mathrm{A}+1}=2 \sec ^{2} \mathrm{~A}$
26. $\frac{\sec \mathrm{A}}{\sec \mathrm{A}+1}+\frac{\sec \mathrm{A}}{\sec \mathrm{A}-1}=2 \operatorname{cosec}^{2} \mathrm{~A}$
27. $\frac{1+\cos \mathrm{A}}{1-\cos \mathrm{A}}=\frac{\tan ^{2} \mathrm{~A}}{(\sec \mathrm{~A}-1)^{2}}$
28. $\frac{\cot ^{2} \mathrm{~A}}{(\operatorname{cosec} \mathrm{~A}+1)^{2}}=\frac{1-\sin \mathrm{A}}{1+\sin \mathrm{A}}$
29. $\frac{1+\sin \mathrm{A}}{\cos \mathrm{A}}+\frac{\cos \mathrm{A}}{1+\sin \mathrm{A}}=2 \sec \mathrm{~A}$
[2012]
30. $\frac{1-\sin A}{1+\sin A}=(\sec A-\tan A)^{2}$
31. $(\cot A-\operatorname{cosec} A)^{2}=\frac{1-\cos A}{1+\cos A}$
32. $\frac{\operatorname{cosec} \mathrm{A}-1}{\operatorname{cosec} \mathrm{~A}+1}=\left(\frac{\cos \mathrm{A}}{1+\sin \mathrm{A}}\right)^{2}$
33. $\tan ^{2} A-\tan ^{2} B=\frac{\sin ^{2} A-\sin ^{2} B}{\cos ^{2} A \cdot \cos ^{2} B}$
34. $\frac{\sin \mathrm{A}-2 \sin ^{3} \mathrm{~A}}{2 \cos ^{3} \mathrm{~A}-\cos \mathrm{A}}=\tan \mathrm{A}$
35. $\frac{\sin A}{1+\cos A}=\operatorname{cosec} A-\cot A$
[2008]
36. $\frac{\cos A}{1-\sin A}=\sec A+\tan A$
37. $\frac{\sin A \tan A}{1-\cos A}=1+\sec A$
38. $(1+\cot A-\operatorname{cosec} A)(1+\tan A+\sec A)=2$
39. $\sqrt{\frac{1+\sin A}{1-\sin A}}=\sec A+\tan A$
40. $\sqrt{\frac{1-\cos A}{1+\cos A}}=\operatorname{cosec} A-\cot A$
41. $\sqrt{\frac{1-\cos A}{1+\cos A}}=\frac{\sin A}{1+\cos A}$
[2000, 2013]
42. $\sqrt{\frac{1-\sin A}{1+\sin A}}=\frac{\cos A}{1+\sin A}$
43. $1-\frac{\cos ^{2} \mathrm{~A}}{1+\sin \mathrm{A}}=\sin \mathrm{A}$
[2001]
44. $\frac{1}{\sin A+\cos A}+\frac{1}{\sin A-\cos A}=\frac{2 \sin A}{1-2 \cos ^{2} A}$
[2002]
45. $\frac{\sin A+\cos A}{\sin A-\cos A}+\frac{\sin A-\cos A}{\sin A+\cos A}=\frac{2}{2 \sin ^{2} A-1}$
46. $\frac{\cot \mathrm{A}+\operatorname{cosec} \mathrm{A}-1}{\cot \mathrm{~A}-\operatorname{cosec} \mathrm{A}+1}=\frac{1+\cos \mathrm{A}}{\sin \mathrm{A}}$
47. $\frac{\sin \theta \tan \theta}{1-\cos \theta}=1+\sec \theta$
[2006]
48. $\frac{\cos \theta \cot \theta}{1+\sin \theta}=\operatorname{cosec} \theta-1$
[2000]

6 Prove that: (i) $\frac{\cos A}{1-\tan A}+\frac{\sin A}{1-\cot A}=\cos A+\sin A$
[2015]

$$
\text { (ii) }\left(1+\tan ^{2} A\right)+\left(1+\frac{1}{\tan ^{2} A}\right)=\frac{1}{\sin ^{2} A-\sin ^{4} A}
$$

Solution :

(i) L.H.S. $=\frac{\cos A}{1-\tan A}+\frac{\sin A}{1-\cot A}$

$$
=\frac{\cos A}{1-\frac{\sin A}{\cos A}}+\frac{\sin A}{1-\frac{\cos A}{\sin A}}
$$

$$
=\frac{\cos A}{\frac{\cos A-\sin A}{\cos A}}+\frac{\sin A}{\frac{\sin A-\cos A}{\sin A}}
$$

$$
=\frac{\cos ^{2} A}{\cos A-\sin A}+\frac{\sin ^{2} A}{\sin A-\cos A}
$$

$$
=\frac{\cos ^{2} A}{\cos A-\sin A}-\frac{\sin ^{2} A}{\cos A-\sin A}
$$

$$
=\frac{\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}}{\cos \mathrm{~A}-\sin \mathrm{A}}
$$

$$
=\frac{(\cos A-\sin A)(\cos A+\sin A)}{\cos A-\sin A}=\cos A+\sin A=\text { R.H.S. }
$$

(ii) L.H.S. $=\left(1+\tan ^{2} \mathrm{~A}\right)+\left(1+\frac{1}{\tan ^{2} \mathrm{~A}}\right)$

$$
\begin{aligned}
& =\sec ^{2} \mathrm{~A}+\left(1+\cot ^{2} \mathrm{~A}\right) \\
& =\sec ^{2} \mathrm{~A}+\operatorname{cosec}^{2} \mathrm{~A} \\
& =\frac{1}{\cos ^{2} \mathrm{~A}}+\frac{1}{\sin ^{2} \mathrm{~A}}=\frac{\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}}{\cos ^{2} \mathrm{~A} \sin ^{2} \mathrm{~A}}=\frac{1}{\cos ^{2} \mathrm{~A} \sin ^{2} \mathrm{~A}} \\
& =\frac{1}{\left(1-\sin ^{2} \mathrm{~A}\right) \sin ^{2} \mathrm{~A}}=\frac{1}{\sin ^{2} \mathrm{~A}-\sin ^{4} \mathrm{~A}}=\text { R.H.S. }
\end{aligned}
$$

(7) If $\tan \mathrm{A}+\sin \mathrm{A}=m$ and $\tan \mathrm{A}-\sin \mathrm{A}=n$; prove that : $m^{2}-n^{2}=4 \sqrt{m n}$.

Solution :

$$
\left.\begin{array}{rl}
m^{2}-n^{2} & =(m+n)(m-n) \\
& =(\tan \mathrm{A}+\sin \mathrm{A}+\tan \mathrm{A}-\sin \mathrm{A})(\tan \mathrm{A}+\sin \mathrm{A}-\tan \mathrm{A}+\sin \mathrm{A}) \\
& =(2 \tan \mathrm{~A})(2 \sin \mathrm{~A}) \\
& =4 \tan \mathrm{~A} \sin \mathrm{~A} \tag{I}\\
4 \sqrt{m n} & =4 \sqrt{(\tan \mathrm{~A}+\sin \mathrm{A})(\tan \mathrm{A}-\sin \mathrm{A})} \\
& =4 \sqrt{\tan ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}} \\
& =4 \sqrt{\left.\frac{\sin ^{2} \mathrm{~A}}{\cos ^{2} \mathrm{~A}}-\sin ^{2} \mathrm{~A}\right)} \\
& =4 \sin \mathrm{~A} \sqrt{\sec ^{2} \mathrm{~A}-1} \\
& =4 \sin \mathrm{~A} \cdot \tan \mathrm{~A}
\end{array} \quad\left[\because \frac{1}{\cos ^{2} \mathrm{~A}}=\sec ^{2} \mathrm{~A}\right]\right] \text { (II) } \quad\left[\because \sec ^{2} \mathrm{~A}-1=\tan ^{2} \mathrm{~A}\right] \quad \text {. } \quad \begin{aligned}
& \text { (I) } \\
&
\end{aligned}
$$

$\therefore \quad m^{2}-n^{2}=4 \sqrt{m n}$
[From I and II]

Hence Proved.

8 If $x=a \sec A \cos B, y=b \sec A \sin B$ and $z=c$ tan A; show that:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$

Solution :

$$
\begin{aligned}
\text { L.H.S. } & =\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}} \\
& =\frac{(a \sec \mathrm{~A} \cos \mathrm{~B})^{2}}{a^{2}}+\frac{(b \sec \mathrm{~A} \sin \mathrm{~B})^{2}}{b^{2}}-\frac{(c \tan \mathrm{~A})^{2}}{c^{2}}
\end{aligned}
$$

$$
\begin{array}{ll}
=\frac{a^{2} \sec ^{2} \mathrm{~A} \cos ^{2} \mathrm{~B}}{a^{2}}+\frac{b^{2} \sec ^{2} \mathrm{~A} \sin ^{2} \mathrm{~B}}{b^{2}}-\frac{c^{2} \tan ^{2} \mathrm{~A}}{c^{2}} \\
=\sec ^{2} \mathrm{~A} \cos ^{2} \mathrm{~B}+\sec ^{2} \mathrm{~A} \sin ^{2} \mathrm{~B}-\tan ^{2} \mathrm{~A} \\
=\sec ^{2} \mathrm{~A}\left(\cos ^{2} \mathrm{~B}+\sin ^{2} \mathrm{~B}\right)-\tan ^{2} \mathrm{~A} & \\
=\sec ^{2} \mathrm{~A}-\tan ^{2} \mathrm{~A} & {\left[\because \cos ^{2} \mathrm{~B}+\sin ^{2} \mathrm{~B}=1\right]} \\
=1=\text { R.H.S. } & {\left[\because \sec ^{2} \mathrm{~A}-\tan ^{2} \mathrm{~A}=1\right]}
\end{array}
$$

EXERCISE 21(B)

1. Prove that :
(i) $\frac{\cos A}{1-\tan A}+\frac{\sin A}{1-\cot A}=\sin A+\cos A$
[2003]
(ii) $\frac{\cos ^{3} \mathrm{~A}+\sin ^{3} \mathrm{~A}}{\cos \mathrm{~A}+\sin \mathrm{A}}+\frac{\cos ^{3} \mathrm{~A}-\sin ^{3} \mathrm{~A}}{\cos \mathrm{~A}-\sin \mathrm{A}}=2$
(iii) $\frac{\tan \mathrm{A}}{1-\cot \mathrm{A}}+\frac{\cot \mathrm{A}}{1-\tan \mathrm{A}}=\sec \mathrm{A} \operatorname{cosec} \mathrm{A}+1$
(iv) $\left(\tan A+\frac{1}{\cos A}\right)^{2}+\left(\tan A-\frac{1}{\cos A}\right)^{2}$

$$
=2\left(\frac{1+\sin ^{2} \mathrm{~A}}{1-\sin ^{2} \mathrm{~A}}\right)
$$

(v) $2 \sin ^{2} \mathrm{~A}+\cos ^{4} \mathrm{~A}=1+\sin ^{4} \mathrm{~A}$
(vi) $\frac{\sin A-\sin B}{\cos A+\cos B}+\frac{\cos A-\cos B}{\sin A+\sin B}=0$
(vii) $(\operatorname{cosec} A-\sin A)(\sec A-\cos A)$

$$
=\frac{1}{\tan A+\cot A}
$$

(viii) $(1+\tan \mathrm{A} \cdot \tan \mathrm{B})^{2}+(\tan \mathrm{A}-\tan \mathrm{B})^{2}$

$$
=\sec ^{2} A \sec ^{2} B
$$

$$
\text { (ix) } \frac{1}{\cos \mathrm{~A}+\sin \mathrm{A}-1}+\frac{1}{\cos \mathrm{~A}+\sin \mathrm{A}+1}
$$

$$
=\operatorname{cosec} A+\sec A
$$

2. If $x \cos \mathrm{~A}+y \sin \mathrm{~A}=m$ and $x \sin \mathrm{~A}-y \cos \mathrm{~A}=n$, then prove that :

$$
x^{2}+y^{2}=m^{2}+n^{2}
$$

3. If $m=a \sec \mathrm{~A}+b \tan \mathrm{~A}$ and $n=a \tan \mathrm{~A}+b \sec \mathrm{~A}$, then prove that :

$$
m^{2}-n^{2}=a^{2}-b^{2}
$$

4. If $x=r \sin \mathrm{~A} \cos \mathrm{~B}, y=r \sin \mathrm{~A} \sin \mathrm{~B}$ and $z=r \cos \mathrm{~A}$, then prove that :

$$
x^{2}+y^{2}+z^{2}=r^{2}
$$

5. If $\sin \mathrm{A}+\cos \mathrm{A}=m$ and $\sec \mathrm{A}+\operatorname{cosec} \hat{\mathrm{A}}=n$, show that :
$n\left(\mathrm{~m}^{2}-1\right)=2 \mathrm{~m}$
6. If $x=r \cos \mathrm{~A} \cos \mathrm{~B}, y=r \cos \mathrm{~A} \sin \mathrm{~B}$ and $z=r \sin \mathrm{~A}$, show that :
$x^{2}+y^{2}+z^{2}=r^{2}$
7. If $\frac{\cos \mathrm{A}}{\cos \mathrm{B}}=m$ and $\frac{\cos \mathrm{A}}{\sin \mathrm{B}}=n$,
show that :
$\left(m^{2}+n^{2}\right) \cos ^{2} \mathrm{~B}=n^{2}$.

21.5 Trigonometrical Ratios of Complementary Angles:

For an acute angle A,
(i) $\sin \left(90^{\circ}-A\right)=\cos A$,
(ii) $\cos \left(90^{\circ}-\mathrm{A}\right)=\sin \mathrm{A}$,
(iii) $\tan \left(90^{\circ}-\mathrm{A}\right)=\cot \mathrm{A}$,
(iv) $\cot \left(90^{\circ}-\mathrm{A}\right)=\tan \mathrm{A}$,
(v) $\sec \left(90^{\circ}-\mathrm{A}\right)=\operatorname{cosec} \mathrm{A}$
and
(vi) $\operatorname{cosec}\left(90^{\circ}-A\right)=\sec A$.

9 Find the value of x, if :
$\cos x=\cos 60^{\circ} \cos 30^{\circ}+\sin 60^{\circ} \sin 30^{\circ}$.

Solution :

$$
\begin{aligned}
\cos x & =\frac{1}{2} \times \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2} \times \frac{1}{2} \\
& =\frac{\sqrt{3}+\sqrt{3}}{4}=\frac{2 \sqrt{3}}{4}=\frac{\sqrt{3}}{2}=\cos 30^{\circ} \quad \therefore \quad x=30^{\circ}
\end{aligned}
$$

Ans.

10 Given $\cos 38^{\circ} \sec \left(90^{\circ}-2 A\right)=1$; find the value of angle A.

Solution :

$$
\cos 38^{\circ} \sec \left(90^{\circ}-2 \mathrm{~A}\right)=1 \Rightarrow \cos 38^{\circ} \operatorname{cosec} 2 \mathrm{~A}=1 \quad\left[\because \sec \left(90^{\circ}-\theta\right)=\operatorname{cosec} \theta\right]
$$

$$
\begin{aligned}
& \Rightarrow \cos 38^{\circ} \times \frac{1}{\sin 2 \mathrm{~A}}=1 \quad\left[\because \operatorname{cosec} \theta=\frac{1}{\sin \theta}\right] \\
& \Rightarrow \sin 2 \mathrm{~A}=\cos 38^{\circ} \\
& =\cos \left(90^{\circ}-52^{\circ}\right) \\
& \Rightarrow \sin 2 \mathrm{~A}=\sin 52^{\circ} \quad\left[\because \cos \left(90^{\circ}-\theta\right)=\sin \theta\right]
\end{aligned}
$$

$\therefore 2 \mathrm{~A}=52^{\circ}$ and $\mathrm{A}=26^{\circ}$
Ans.

EXERCISE 21(C)

1. Show that:
(i) $\tan 10^{\circ} \tan 15^{\circ} \tan 75^{\circ} \tan 80^{\circ}=1$
(ii) $\sin 42^{\circ} \sec 48^{\circ}+\cos 42^{\circ} \operatorname{cosec} 48^{\circ}=2$
(iii) $\frac{\sin 26^{\circ}}{\sec 64^{\circ}}+\frac{\cos 26^{\circ}}{\operatorname{cosec} 64^{\circ}}=1$
2. Express each of the following in terms of angles between 0° and 45° :
(i) $\sin 59^{\circ}+\tan 63^{\circ}$
(ii) $\operatorname{cosec} 68^{\circ}+\cot 72^{\circ}$
(iii) $\cos 74^{\circ}+\sec 67^{\circ}$
3. Show that :
(i) $\frac{\sin \mathrm{A}}{\sin \left(90^{\circ}-\mathrm{A}\right)}+\frac{\cos \mathrm{A}}{\cos \left(90^{\circ}-\mathrm{A}\right)}=\sec \mathrm{A} \operatorname{cosec} \mathrm{A}$
(ii) $\sin \mathrm{A} \cos \mathrm{A}-\frac{\sin \mathrm{A} \cos \left(90^{\circ}-\mathrm{A}\right) \cos \mathrm{A}}{\sec \left(90^{\circ}-\mathrm{A}\right)}$

$$
-\frac{\cos \mathrm{A} \sin \left(90^{\circ}-\mathrm{A}\right) \sin \mathrm{A}}{\operatorname{cosec}\left(90^{\circ}-\mathrm{A}\right)}=0
$$

4. For triangle ABC , show that :
(i) $\sin \frac{A+B}{2}=\cos \frac{C}{2}$
(ii) $\tan \frac{B+C}{2}=\cot \frac{A}{2}$
5. Evaluate :
(i) $3 \frac{\sin 72^{\circ}}{\cos 18^{\circ}}-\frac{\sec 32^{\circ}}{\operatorname{cosec} 58^{\circ}}$
(ii) $3 \cos 80^{\circ} \operatorname{cosec} 10^{\circ}+2 \sin 59^{\circ} \sec 31^{\circ}$.
(iii) $\frac{\sin 80^{\circ}}{\cos 10^{\circ}}+\sin 59^{\circ} \sec 31^{\circ}$
(iv) $\tan \left(55^{\circ}-\mathrm{A}\right)-\cot \left(35^{\circ}+\mathrm{A}\right)$
(v) $\operatorname{cosec}\left(65^{\circ}+\mathrm{A}\right)-\sec \left(25^{\circ}-\mathrm{A}\right)$
(vi) $2 \frac{\tan 57^{\circ}}{\cot 33^{\circ}}-\frac{\cot 70^{\circ}}{\tan 20^{\circ}}-\sqrt{2} \cos 45^{\circ}$
(vii) $\frac{\cot ^{2} 41^{\circ}}{\tan ^{2} 49^{\circ}}-2 \frac{\sin ^{2} 75^{\circ}}{\cos ^{2} 15^{\circ}}$
(viii) $\frac{\cos 70^{\circ}}{\sin 20^{\circ}}+\frac{\cos 59^{\circ}}{\sin 31^{\circ}}-8 \sin ^{2} 30^{\circ}$
(ix) $14 \sin 30^{\circ}+6 \cos 60^{\circ}-5 \tan 45^{\circ}$. [2004]
6. A triangle $A B C$ is right angled at B; find the value of $\frac{\sec \mathrm{A} \cdot \operatorname{cosec} \mathrm{C}-\tan \mathrm{A} \cdot \cot \mathrm{C}}{\sin \mathrm{B}}$
7. Find (in each case, given below) the value of x, if :
(i) $\sin x=\sin 60^{\circ} \cos 30^{\circ}-\cos 60^{\circ} \sin 30^{\circ}$
(ii) $\sin x=\sin 60^{\circ} \cos 30^{\circ}+\cos 60^{\circ} \sin 30^{\circ}$
(iii) $\cos x=\cos 60^{\circ} \cos 30^{\circ}-\sin 60^{\circ} \sin 30^{\circ}$
(iv) $\tan x=\frac{\tan 60^{\circ}-\tan 30^{\circ}}{1+\tan 60^{\circ} \tan 30^{\circ}}$
(v) $\sin 2 x=2 \sin 45^{\circ} \cos 45^{\circ}$
(vi) $\sin 3 x=2 \sin 30^{\circ} \cos 30^{\circ}$
(vii) $\cos \left(2 x-6^{\circ}\right)=\cos ^{2} 30^{\circ}-\cos ^{2} 60^{\circ}$
8. In each case, given below, find the value of angle A , where $0^{\circ} \leq \mathrm{A} \leq 90^{\circ}$.
(i) $\sin \left(90^{\circ}-3 \mathrm{~A}\right) \cdot \operatorname{cosec} 42^{\circ}=1$
(ii) $\cos \left(90^{\circ}-\mathrm{A}\right) \cdot \sec 77^{\circ}=1$
9. Prove that :
(i) $\frac{\cos \left(90^{\circ}-\theta\right) \cos \theta}{\cot \theta}=1-\cos ^{2} \theta$
(ii) $\frac{\sin \theta \cdot \sin \left(90^{\circ}-\theta\right)}{\cot \left(90^{\circ}-\theta\right)}=1-\sin ^{2} \theta$
10. Evaluate :

$$
\begin{equation*}
\frac{\sin 35^{\circ} \cos 55^{\circ}+\cos 35^{\circ} \sin 55^{\circ}}{\operatorname{cosec}^{2} 10^{\circ}-\tan ^{2} 80^{\circ}} \tag{2010}
\end{equation*}
$$

11. Evaluate :
$\sin ^{2} 34^{\circ}+\sin ^{2} 56^{\circ}+2 \tan 18^{\circ} \tan 72^{\circ}-\cot ^{2} 30^{\circ}$
[2014]

21.6 Using the Trigonometrical Tables:

(i.e., to find the trigonometrical ratios of acute angles other than $0^{\circ}, 30^{\circ}, 45^{\circ}$ and 60°)

The trigonometrical tables give the values of natural sines, cosines and tangents to four decimal places. A trigonometrical table consists of three parts :
(i) a column on the extreme left which contains degrees from 0° to 89°.
(ii) ten columns headed by $0^{\prime}, 6^{\prime}, 12^{\prime}, 18^{\prime}, 24^{\prime}, 30^{\prime}, 36^{\prime} 42^{\prime}, 48^{\prime}$ and 54^{\prime} respectively.
(iii) five columns headed by $1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$ and 5^{\prime} respectively.

Note : When one degree $\left(1^{\circ}\right)$ is divided into sixty equal parts, each part is called one minute (1').
\therefore One degree $=60$ minute i.e. $1^{\circ}=60^{\prime}$.
11 Find: $\sin 36^{\circ} 51^{\prime}$.

Solution :

See the table given for natural sines :

| x° | 0^{\prime} | $6^{\prime} 12^{\prime} 18^{\prime}$ | $24^{\prime} 30^{\prime} 36^{\prime}$ | $42^{\prime} 48^{\prime} 54^{\prime}$ | 1^{\prime}
 Difference to add |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 36 | 0.5878 | | | | $4^{\prime} 5^{\prime}$ |

Since $\sin 36^{\circ} 51^{\prime}=\sin \left(36^{\circ} 48^{\prime}+3^{\prime}\right)$

From table,
$\sin 36^{\circ} 48^{\prime}=0.5990$ [See the number in the row against $36^{\circ} \&$ in the column headed 48^{\prime}]
diff for $3^{\prime}=0.0007$ (To add) [See the number in the same row and under 3^{\prime}]
$\therefore \sin 36^{\circ} 51^{\prime}=0.5997$
Ans.

Find : $\tan 53^{\circ} 38^{\prime}$

Solution :

See the table for natural tangents :

| x° | 0^{\prime} | $6^{\prime} 12^{\prime} 18^{\prime}$ | $24^{\prime} 30^{\prime} 36^{\prime}$ | $42^{\prime} 48^{\prime}$ | 54^{\prime} | 1^{\prime}
 Difference to add | $3^{\prime} \quad 4^{\prime} \quad 5^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 53 | $1 \cdot 3270$ | | 3564 | | 16 | | |

Since $\tan 53^{\circ} 38^{\prime}=\tan \left(53^{\circ} 36^{\prime}+2^{\prime}\right)$
$\therefore \quad \tan 53^{\circ} 36^{\prime}=1.3564$
[From table]
diff for $2^{\prime}=0.0016$
[To add]
$\therefore \quad \tan 53^{\circ} 38^{\prime}=1.3580$
Ans.
13 Find: $\cos 62^{\circ} 27^{\prime}$.
Solution:
See the table for natural cosines :

| x° | 0^{\prime} | $6^{\prime} 12^{\prime} 18^{\prime}$ | $24^{\prime} 30^{\prime} 36^{\prime}$ | $42^{\prime} 48^{\prime}$ | 54^{\prime} | 1^{\prime}
 Difference to subtract | 3^{\prime} | 4^{\prime} | 5^{\prime} |
| :---: | :---: | :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 62 | $0 \cdot 4695$ | | 4633 | | | 8 | | | |

Since $\cos 62^{\circ} 27^{\prime}=\cos \left(62^{\circ} 24^{\prime}+3^{\prime}\right)$
$\therefore \quad \cos 62^{\circ} 24^{\prime}=0.4633$
[From table]
diff for $3^{\prime}=0.0008$
[To subtract]
$\therefore \quad \cos 62^{\circ} 27^{\prime}=0.4625$
Ans.
Note : The trigonometrical tables can also be used to find an acute angle.
14 Find θ; if $\sin \theta=0.5798$.

Solution :

From the table of natural sines find the angle whose sine is just smaller than 0.5798 .

| x° | 0^{\prime} | $6^{\prime} 12^{\prime} 18^{\prime}$ | $24^{\prime} 30^{\prime} 36^{\prime}$ | $42^{\prime} 48^{\prime}$ | 54^{\prime} | 1^{\prime}
 2^{\prime}
 Difference to add |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 35 | 0.5736 | | 5793 | | | 5 |

From the table, it is clear that;

$$
\sin 35^{\circ} 24^{\prime}=0.5793
$$

$$
\begin{aligned}
\sin \theta-\sin 35^{\circ} 24^{\prime}=0.5798-0.5793 & =0.0005 \\
\text { From the table; diff of } 2^{\prime} & =0.0005 \\
\therefore \quad \theta=35^{\circ} 24^{\prime}+2^{\prime} & =35^{\circ} 26^{\prime}
\end{aligned}
$$

Ans.
15 Use tables to find, θ if : $\begin{array}{ll}\text { (i) } \cos \theta=0.4457 & \text { (ii) } \tan \theta=0.8516 .\end{array}$
Solution :
(i) See the table for natural cosines.

\boldsymbol{x}°	0^{\prime}	$6^{\prime} 12^{\prime} 18^{\prime}$	$24^{\prime} 30^{\prime} 36^{\prime}$	$42^{\prime} 48^{\prime} 54^{\prime}$	$1^{\prime} 2^{\prime} 3^{\prime} 4^{\prime} 5^{\prime}$ Difference to subtract
63	0.4540		4446		$10 \quad 13$

Given, $\cos \theta=0.4457$
$\begin{array}{rrr}\cos 63^{\circ} 36^{\prime} & =0.4446 & \text { [From table] } \\ \text { diff. in values } & =0.0011 & {[0.4457-0.4446=0.0011]}\end{array}$
From table, diff of $4^{\prime}=0.0011$
[To subtract]
$\therefore \quad \theta=63^{\circ} 36^{\prime}-4^{\prime}=63^{\circ} 32^{\prime}$ (Ans) [Greater is the value of $\cos \theta$, lesser is θ]
(ii) Similarly, given that $\tan \theta=0.8516$

And, from the table of natural tangents, we observe :

$$
\tan 40^{\circ} 24^{\prime}=0.8511
$$

diff. in values $=0.0005$

$$
[0.8516-0.8511=0.0005]
$$

Since, diff. for $1^{\prime}=0.0005$
[From table]

$$
\therefore \quad \theta=40^{\circ} 24^{\prime}+1^{\prime}=40^{\circ} 25^{\prime}
$$

Ans.

EXERCISE 21(D)

1. Use tables to find sine of :
(i) 21°
(ii) $34^{\circ} 42^{\prime}$
(iii) $47^{\circ} 32^{\prime}$
(iv) $62^{\circ} 57^{\prime}$
(v) $10^{\circ} 20^{\prime}+20^{\circ} 45^{\prime}$
2. Use tables to find cosine of:
(i) $2^{\circ} 4^{\prime}$
(ii) $8^{\circ} 12^{\prime}$
(iii) $26^{\circ} 32^{\prime}$
(iv) $65^{\circ} 41^{\prime}$
(v) $9^{\circ} 23^{\prime}+15^{\circ} 54^{\prime}$
3. Use trigonometrical tables to find tangent of:
(i) 37°
(ii) $42^{\circ} 18^{\prime}$
(iii) $17^{\circ} 27^{\prime}$
4. Use tables to find the acute angle θ, if the value of $\sin \theta$ is :
(i) 0.4848
(ii) 0.3827
(iii) 0.6525
5. Use tables to find the acute angle θ, if the value of $\cos \theta$ is :
(i) 0.9848
(ii) 0.9574
(iii) 0.6885
6. Use tables to find the acute angle θ, if the value of $\tan \theta$ is :
(i) 0.2419
(ii) 0.4741
(iii) 0.7391
7. Prove the following identities:
(i) $\frac{1}{\cos A+\sin A}+\frac{1}{\cos A-\sin A}$

$$
=\frac{2 \cos \mathrm{~A}}{2 \cos ^{2} \mathrm{~A}-1}
$$

(ii) $\operatorname{cosec} A-\cot A=\frac{\sin A}{1+\cos A}$
(iii) $1-\frac{\sin ^{2} A}{1+\cos A}=\cos A$
(iv) $\frac{1-\cos A}{\sin A}+\frac{\sin A}{1-\cos A}=2 \operatorname{cosec} A$
(v) $\frac{\cot A}{1-\tan A}+\frac{\tan A}{1-\cot A}=1+\tan A+\cot A$
(vi) $\frac{\cos A}{1+\sin A}+\tan A=\sec A$
(vii) $\frac{\sin A}{1-\cos A}-\cot A=\operatorname{cosec} A$
(viii) $\frac{\sin A-\cos A+1}{\sin A+\cos A-1}=\frac{\cos A}{1-\sin A}$
(ix) $\sqrt{\frac{1+\sin A}{1-\sin A}}=\frac{\cos A}{1-\sin A}$
(x) $\sqrt{\frac{1-\cos A}{1+\cos A}}=\frac{\sin A}{1+\cos A}$
(xi) $\frac{1+(\sec A-\tan A)^{2}}{\operatorname{cosec} A(\sec A-\tan A)}=2 \tan A$
(xii) $\frac{(\operatorname{cosec} A-\cot A)^{2}+1}{\sec A(\operatorname{cosec} A-\cot A)}=2 \cot A$
(xiii) $\cot ^{2} \mathrm{~A}\left(\frac{\sec \mathrm{~A}-1}{1+\sin \mathrm{A}}\right)+\sec ^{2} \mathrm{~A}\left(\frac{\sin \mathrm{~A}-1}{1+\sec \mathrm{A}}\right)=0$
(xiv) $\frac{\left(1-2 \sin ^{2} \mathrm{~A}\right)^{2}}{\cos ^{4} \mathrm{~A}-\sin ^{4} \mathrm{~A}}=2 \cos ^{2} \mathrm{~A}-1$
(xv) $\sec ^{4} A\left(1-\sin ^{4} A\right)-2 \tan ^{2} A=1$
(xvi) $\operatorname{cosec}^{4} A\left(1-\cos ^{4} A\right)-2 \cot ^{2} A=1$
$(x$ vii $)(1+\tan A+\sec A)(1+\cot A-\operatorname{cosec} A)=2$
2. If $\sin A+\cos A=p$
and $\sec \mathrm{A}+\operatorname{cosec} \mathrm{A}=q$, then prove that : $q\left(p^{2}-1\right)=2 p$.
3. If $x=a \cos \theta$ and $y=b \cot \theta$, show that :

$$
\frac{a^{2}}{x^{2}}-\frac{b^{2}}{y^{2}}=1
$$

4. If $\sec \mathrm{A}+\tan \mathrm{A}=p$, show that :

$$
\sin A=\frac{p^{2}-1}{p^{2}+1}
$$

5. If $\tan \mathrm{A}=n \tan \mathrm{~B}$ and $\sin \mathrm{A}=m \sin \mathrm{~B}$, prove that :

$$
\cos ^{2} \mathrm{~A}=\frac{m^{2}-1}{n^{2}-1}
$$

6. (i) If $2 \sin A-1=0$, show that : $\sin 3 A=3 \sin A-4 \sin ^{3} A$
[2001]
(ii) If $4 \cos ^{2} A-3=0$, show that : $\cos 3 A=4 \cos ^{3} A-3 \cos A$
7. Evaluate :
(i) $2\left(\frac{\tan 35^{\circ}}{\cos 55^{\circ}}\right)^{2}+\left(\frac{\cot 55^{\circ}}{\tan 35^{\circ}}\right)^{2}-3\left(\frac{\sec 40^{\circ}}{\operatorname{cosec} 50^{\circ}}\right)$
[2011]
(ii) $\sec 26^{\circ} \sin 64^{\circ}+\frac{\operatorname{cosec} 33^{\circ}}{\sec 57^{\circ}}$
(iii) $\frac{5 \sin 66^{\circ}}{\cos 24^{\circ}}-\frac{2 \cot 85^{\circ}}{\tan 5^{\circ}}$
(iv) $\cos 40^{\circ} \operatorname{cosec} 50^{\circ}+\sin 50^{\circ} \sec 40^{\circ}$
(v) $\sin 27^{\circ} \sin 63^{\circ}-\cos 63^{\circ} \cos 27^{\circ}$
(vi) $\frac{3 \sin 72^{\circ}}{\cos 18^{\circ}}-\frac{\sec 32^{\circ}}{\operatorname{cosec} 58^{\circ}}$
[2000]
(vii) $3 \cos 80^{\circ} \operatorname{cosec} 10^{\circ}+2 \cos 59^{\circ} \operatorname{cosec} 31^{\circ}$
[2002]
(viii) $\frac{\cos 75^{\circ}}{\sin 15^{\circ}}+\frac{\sin 12^{\circ}}{\cos 78^{\circ}}-\frac{\cos 18^{\circ}}{\sin 72^{\circ}}$
[2003]
8. Prove that :
(i) $\tan \left(55^{\circ}+x\right)=\cot \left(35^{\circ}-x\right)$
(ii) $\sec \left(70^{\circ}-\theta\right)=\operatorname{cosec}\left(20^{\circ}+\theta\right)$
(iii) $\sin \left(28^{\circ}+\mathrm{A}\right)=\cos \left(62^{\circ}-\mathrm{A}\right)$
(iv) $\frac{1}{1+\cos \left(90^{\circ}-\mathrm{A}\right)}+\frac{1}{1-\cos \left(90^{\circ}-\mathrm{A}\right)}$

$$
=2 \operatorname{cosec}^{2}\left(90^{\circ}-A\right)
$$

(v) $\frac{1}{1+\sin \left(90^{\circ}-\mathrm{A}\right)}+\frac{1}{1-\sin \left(90^{\circ}-\mathrm{A}\right)}$

$$
=2 \sec ^{2}\left(90^{\circ}-\mathrm{A}\right)
$$

9. If A and B are complementary angles, prove that :
(i) $\cot \mathrm{B}+\cos \mathrm{B}=\sec \mathrm{A} \cos \mathrm{B}(1+\sin \mathrm{B})$
(ii) $\cot \mathrm{A} \cot \mathrm{B}-\sin \mathrm{A} \cos \mathrm{B}-\cos \mathrm{A} \sin \mathrm{B}=0$
(iii) $\operatorname{cosec}^{2} \mathrm{~A}+\operatorname{cosec}^{2} \mathrm{~B}=\operatorname{cosec}^{2} \mathrm{~A} \operatorname{cosec}^{2} \mathrm{~B}$
(iv) $\frac{\sin \mathrm{A}+\sin \mathrm{B}}{\sin \mathrm{A}-\sin \mathrm{B}}+\frac{\cos \mathrm{B}-\cos \mathrm{A}}{\cos \mathrm{B}+\cos \mathrm{A}}=\frac{2}{2 \sin ^{2} \mathrm{~A}-1}$
10. Prove that :
(i) $\frac{1}{\sin A-\cos A}-\frac{1}{\sin A+\cos A}=\frac{2 \cos A}{2 \sin ^{2} A-1}$
(ii) $\frac{\cot ^{2} \mathrm{~A}}{\operatorname{cosec} \mathrm{~A}-1}-1=\operatorname{cosec} \mathrm{A}$
(iii) $\frac{\cos A}{1+\sin A}=\sec A-\tan A$
(iv) $\cos \mathrm{A}(1+\cot \mathrm{A})+\sin \mathrm{A}(1+\tan \mathrm{A})$

$$
=\sec A+\operatorname{cosec} A
$$

(v) $(\sin \mathrm{A}-\cos \mathrm{A})(1+\tan \mathrm{A}+\cot \mathrm{A})$

$$
=\frac{\sec \mathrm{A}}{\operatorname{cosec}^{2} \mathrm{~A}}-\frac{\operatorname{cosec} \mathrm{A}}{\sec ^{2} \mathrm{~A}}
$$

(vi) $\sqrt{\sec ^{2} A+\operatorname{cosec}^{2} A}=\tan A+\cot A$
(vii) $(\sin A+\cos A)(\sec A+\operatorname{cosec} A)$

$$
=2+\sec A \operatorname{cosec} A
$$

(viii) $(\tan A+\cot A)(\operatorname{cosec} A-\sin A)$ $(\sec A-\cos A)=1$

$$
\text { (ix) } \begin{aligned}
\cot ^{2} A-\cot ^{2} \mathrm{~B} & =\frac{\cos ^{2} \mathrm{~A}-\cos ^{2} \mathrm{~B}}{\sin ^{2} \mathrm{~A} \sin ^{2} \mathrm{~B}} \\
& =\operatorname{cosec}^{2} \mathrm{~A}-\operatorname{cosec}^{2} \mathrm{~B}
\end{aligned}
$$

11. If $4 \cos ^{2} \mathrm{~A}-3=0$ and $0^{\circ} \leq \mathrm{A} \leq 90^{\circ}$, then prove that :
(i) $\sin 3 A=3 \sin A-4 \sin ^{3} A$
(ii) $\cos 3 A=4 \cos ^{3} A-3 \cos A$
$4 \cos ^{2} A-3=0 \Rightarrow \cos ^{2} A=\frac{3}{4}$
and $\cos \mathrm{A}=\frac{\sqrt{3}}{2} \Rightarrow \mathrm{~A}=30^{\circ}$
(i) $\sin 3 \mathrm{~A}=\sin 90^{\circ}=1$
and, $3 \boldsymbol{\operatorname { s i n }} A-4 \sin ^{3} A$

$$
\begin{aligned}
& =3 \sin 30^{\circ}-4 \sin ^{3} 30^{\circ} \\
& =3 \times \frac{1}{2}-4 \times\left(\frac{1}{2}\right)^{3} \\
& =\frac{3}{2}-\frac{1}{2}=1 \\
& \therefore \sin 3 \mathrm{~A}=3 \sin \mathrm{~A}-4 \sin ^{3} \mathrm{~A} .
\end{aligned}
$$

12. Find A , if $0^{\circ} \leq \mathrm{A} \leq 90^{\circ}$ and :
(i) $2 \cos ^{2} \mathrm{~A}-1=0$
(ii) $\sin 3 \mathrm{~A}-1=0$
(iii) $4 \sin ^{2} A-3=0$
(iv) $\cos ^{2} \mathrm{~A}-\cos \mathrm{A}=0$
(v) $2 \cos ^{2} \mathrm{~A}+\cos \mathrm{A}-1=0$
13. If $0^{\circ}<\mathrm{A}<90^{\circ}$; find A , if :
(i) $\frac{\cos A}{1-\sin A}+\frac{\cos A}{1+\sin A}=4$
(ii) $\frac{\sin \mathrm{A}}{\sec \mathrm{A}-1}+\frac{\sin \mathrm{A}}{\sec \mathrm{A}+1}=2$
14. Prove that :
$(\operatorname{cosec} \mathrm{A}-\sin \mathrm{A})(\sec \mathrm{A}-\cos \mathrm{A}) \sec ^{2} \mathrm{~A}=\tan \mathrm{A}$
[2011]
15. Prove the identity $(\sin \theta+\cos \theta)(\tan \theta+\cot \theta)$ $=\sec \theta+\operatorname{cosec} \theta$.
[2014]
